
Who’s left behind?
Measuring Adoption of Application Updates at Scale

John P. Rula
Akamai

jrula@akamai.com

Philipp Richter
Akamai / MIT

prichter@akamai.com

Georgios Smaragdakis
TU Berlin

georgios.smaragdakis@tu-berlin.de

Arthur Berger
Akamai / MIT

awberger@akamai.com

ABSTRACT
This work presents a large-scale, longitudinal measurement study
on the adoption of application updates, enabling continuous re-
porting of potentially vulnerable software populations worldwide.
Studying the factors impacting software currentness, we investigate
and discuss the impact of the platform and its updating strategies on
software currentness, device lock-in effects, as well as user behavior.
Utilizing HTTP User-Agent strings from end-hosts, we introduce
techniques to extract application and operating system information
from myriad structures, infer version release dates of applications,
and measure population adoption, at a global scale. To deal with
loosely structured User-Agent data, we develop a semi-supervised
method that can reliably extract application and version informa-
tion for some 87% of requests served by a major CDN every day.
Using this methodology, we track release and adoption dynamics of
some 35,000 applications. Analyzing over three years of CDN logs,
we show that vendors’ update strategies and platforms have a signif-
icant effect on the adoption of application updates. Our results show
that, on some platforms, up to 25% of requests originate from hosts
running application versions that are out-of-date by more than 100
days, and 16% more than 300 days. We find pronounced differences
across geographical regions, and overall, less developed regions
are more likely to have out-of-date software versions. Though, for
every country, we find that at least 10% of requests reaching the
CDN run software that is out-of-date by more than three months.

CCS CONCEPTS
• Networks→ Network measurement;

ACM Reference Format:
John P. Rula, Philipp Richter, Georgios Smaragdakis, and Arthur Berger.
2020. Who’s left behind? Measuring Adoption of Application Updates at
Scale. In ACM Internet Measurement Conference (IMC ’20), October 27–29,
2020, Virtual Event, USA. ACM, New York, NY, USA, 14 pages. https://doi.
org/10.1145/3419394.3423656

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-8138-3/20/10. . . $15.00
https://doi.org/10.1145/3419394.3423656

1 INTRODUCTION
Internet penetration has reached an all-time high. With more than
4 billion users online [43], we are observing a once in a generation
revolution in the way we socially interact, have access to education
and information, entertain, and do business. Moreover, the Internet
is becoming more performant and increasingly mobile, allowing for
innovation in both well-developed economies as well as in develop-
ing ones. Websites as well as increasingly mobile applications (apps)
continue to offer new services, increasing user subscriptions and
engagement [32]. Traffic from mobile applications has increased
dramatically in the last years [9, 15].

However, an increasing diversity of applications, software ver-
sions, and devices also brings new security challenges. Vulnerabil-
ities in software or end-user device hardware can be used as an
attack vector to orchestrate denial-of-service attacks [5] or expose
personal information [34–36, 47]. The industry’s response is to
regularly release software updates to fix bugs and patch vulnera-
bilities [27] as well as to provide platforms to make applications
and their updates secure and easily available to end users [2]. For
example, Google maintains the Google Play Store (formerly known
as Android Market) [23] for Android OS updates as well as Android
application updates, and Apple maintains the App Store [6] for Ap-
ple iOS and MacOS, and applications in Apple products. Software
vendors can push their updates to these platforms and the platforms
make them available to millions of end users. All these platforms
support automatic updates, but default settings vary, and in some
instances, users have to opt-in to enable automatic updates.

Unfortunately, despite the effort from software and platform
vendors to release application updates frequently and make them
easily available to users, there are many factors that may slow
down the adoption of a software update. There is the human factor,
the user, who decides to download and install the latest update or
not. Some users operate outdated handsets running unsupported
operating systems (e.g., smartphones running Android versions
that are not supported any longer). Moreover, some updates, es-
pecially OS updates, may not be supported by individual device
vendors, especially for mobile devices that were purchased as part
of a package with mobile operators [31]. There are also parameters
that may affect the adoption of updates that have to do with the
network speed and cost. For example, Apple iOS recommends to
download updates to the iPhone only when connected to a WiFi
network, and not when connected via a cellular network to speed
up the download and reduce mobile data charges. In the absence of

https://doi.org/10.1145/3419394.3423656
https://doi.org/10.1145/3419394.3423656
https://doi.org/10.1145/3419394.3423656

IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA Rula et al.

WiFi connectivity, mobile data charges may prompt users to not
use their bandwidth allowance for software updates.

Despite the importance of application updates, we have a rather
limited understanding of how “current” is the software of large user
populations. Today, we can not answer simple questions such as,
“what is the fraction of mobile users that run the latest version of an
application”, or “what is the fraction of mobile users that have not
updated a given application for more than a month, or run a version
with a known vulnerability”. There are many challenges to answer-
ing these questions at scale. First, active measurements that have
been used to infer the software versions and related vulnerabilities
that run on the server-side, e.g., with active scanning [12, 13, 48],
are not applicable to all end user devices, especially if these are
mobile or behind Carrier-Grade or home NATs [38]. Telemetry
can provide useful insights but only for a limited number of ap-
plications [30, 40]. Tracking the currentness of end-user software
hence requires passive measurements using a vantage point that
can illuminate version adoption at scale. Second, even if access to
such a vantage point is possible, determining useful information,
such as the current version of a particular application, is a complex
task [11]. While HTTP(S)-based communication has long emerged
as the preferred way for applications to communicate, there is no
standardized or universally adopted method that applications use
to convey their current version to the server they communicate
with. Third, with new versions of thousands of applications re-
leased every day to fix bugs, patch vulnerabilities, and improve
user engagement, it is very challenging to maintain a detailed and
current list that tracks version release dates, and consequently their
adoption, for each application [32].

In this work, we tackle some of these challenges. The contributions
of this paper can be summarized as follows:
(1) We develop an adaptive clustering-basedmethodology to extract

useful information from loosely structured HTTP User-Agent
strings about the requesting application, its version, operating
system, and device type of the host that initiated the HTTP
request. We showcase the efficiency of our method by applying
it on Web server logs from a major Content Delivery Network
(CDN). We show that our approach scales well with millions of
unique User-Agents on a daily basis, and is able to extract useful
information for 87% of requests that reach the CDN platform.

(2) We devise a method that allows us to infer the release dates
of new versions and updates of some 35,000 applications that
interact with the CDN over the course of 3.5 years. Leveraging
this information, we devise metrics that can capture software
currentness, version adoption, and allow us to present broad and
detailed statistics on version adoption of applications, globally.

(3) We study the impact of the platform on software adoption:
our analysis shows significant differences when it comes to
the adoption of application updates across different platforms,
an indication that software update strategies by software and
platform vendors have a profound effect on the applications
run at the edge. We report that on some platforms, up to 25%
of requests originate from hosts running application versions
that have not been updated 100 days after the release of a new
software version, and 16% from hosts still not updated over
300 days after a new release. We investigate and discuss the

impact of the platform and its updating strategies on software
currentness, device lock-in effects, as well as the impact of user
behavior.

(4) We find pronounced differences across geographical regions,
and overall find that less developed regions are more likely to
have out-of-date software versions. Though, for every country,
we find that a notable percentage, at least 10%, of requests that
reach the CDN platform run software that is out-of-date by
more than three months. The associated hosts can potentially
be compromised and exploited.
The remainder of this paper is structured as follows: we provide

a brief introduction on HTTP User-Agent strings in Section 2 and
introduce our dataset in Section 3. We present our method to parse
User-Agent strings in Section 4. Applying our methodology, we
present broad and detailed statistics on adoption trends in Section 5.
We then assess currentness of applications across platforms and
regions, and study factors impacting currentness in Section 6, and
discuss implications of our work in Section 7.

2 BACKGROUND
The User-Agent string (User-Agent or UA in the following) is a
request-header field that is present in HTTP requests and contains
information about the User-Agent (i.e., the application) that origi-
nates the request [19]. While historically, agents, applications, were
limited to a small number of classical Web browsers, today agents
comprise of “any software that retrieves, renders and facilitates
end user interaction with Web content, or whose user interface is
implemented using Web technologies” [46]. Historically, UA strings
used to follow a well-structured pattern to identify Web browsers,
their version, as well as their capabilities. Consider the following
example UA string taken from [3]:

Mozilla/5.0 (iPhone; CPU iPhone OS 10 3 3 like Mac OS X)
AppleWebKit/602.1.50 (KHTML, like Gecko) Version/10.0
Mobile/14G60 Safari/602.1

The above example presents us with a UA string in a classical for-
mat, and we can infer that the request comes from an iPhone with
iOS 10.3.3 (build 14G60) that runs the Apple Safari 10 browser with
browser engine (WebKit) version 602.1.50. Over time, however, UA
strings became more complex, less-standard, and included more
information about the connecting host, the device type, and its
operating system. Especially with the emergence of mobile appli-
cations, new types of UA strings emerged. Consider the following
two example UA strings taken from [3]:

Mozilla/5.0 (iPhone; CPU iPhone OS 13_3_1 like Mac OS X)
AppleWebKit/605.1.15 (KHTML, like Gecko) Mobile/15E148
[FBAN/FBIOS;FBDV/iPhone12,1;FBMD
/iPhone;FBSN/iOS;FBSV/13.3.1;FBSS/2;FBID/phone;
FBLC/en_US;FBOP/5;FBCR/]

Outlook-iOS/711.2237063.prod.iphone (3.25.0)

The above strings show examples of UAs coming from the Facebook
app browser, and from the Outlook app running on iOS. The Face-
book app browser string follows a partially well-defined format
but includes additional information on the device the application

Who’s left behind? IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA

is running on, as well as detailed information on the version of
the application. The second example, Outlook on iOS, does not
provide information on the device used, but reveals the platform
(iOS), as well as a detailed version number. These strings do not
follow a well-defined pattern and may include additional pieces of
information that have to be communicated to the server-side of the
application for advanced optimizations of the content. User-Agents
contain relevant information but parsing and processing this in-
formation becomes increasingly cumbersome due to increasing
fragmentation of UA strings, especially for User-Agents of mobile
applications.

Indeed, we found existing open source solutions for parsing
User-Agents performed poorly when identifying non-browser ap-
plications (common examples shown above). This motivates us to
develop our own methodology to handle these applications and
their corresponding non-traditional User-Agent formats.
Related work. Several studies have investigated the diversity and
characteristics of HTTP User-Agents. These have ranged from gen-
eral characteristics of User-Agent strings [24], to studying User-
Agent uniqueness [14], it’s implications in device profiling [41, 47],
and abuse of UAs [49]. Similar to our approach, information ex-
tracted from User-Agent headers has been used to track software
adoption [11, 22]. Our work greatly expands on the scope and
scale of these related works, providing a significantly longer mea-
surement period, covering orders of magnitude more clients and
applications.

Given their importance in functional security policy, software
update adoption has been the subject of much prior work. Re-
cent incidents of widespread server vulnerabilities have prompted
studies of the global response of server operators to these highly
publicized events. These include Heartbleed [12], Spectre [25] and
Meltdown [28]. Other studies have looked at adoption rates of client
software updates by analyzing traces collected at a University cam-
pus [11] and by using an antivirus on-host vantage point to track
application updates for millions of hosts over several years, but are
limited to a small set of popular applications [30, 40]. A very recent
study utilizes Facebook as a vantage point to characterize out-of-
date browsers [26]. Tracking currentness of software also caught
the attention of policymakers. In May 2016, the US Federal Trade
Commission (FTC) issued identical orders to file special reports
to eight mobile device manufacturers to gather information about
their security update procedures and practices [10]. In February
2018, a report by the FTC summarized this investigation and made
recommendations [18]. While this effort sheds light on the impor-
tance of mobile security updates, it also shows the complexity of
gathering information from different vendors and understanding
the state of the mobile ecosystem.

Our work provides a global and detailed analysis of the state of
application update adoption by relying on requests that arrive at the
CDN platform. To the best of our knowledge, our work represents
the largest study of global software adoption dynamics to date.

3 DATASET
We obtain HTTP User-Agents from access logs of a large content
delivery network (CDN). The CDN processes trillions of HTTP
connections daily, and serves clients from over 290,000 servers

date

da
ily

 u
ni

qu
e

sa
m

pl
ed

 U
se

r−
Ag

en
t s

tri
ng

s

Apr 2016 Apr 2017 Apr 2018 Apr 2019

10
M

15
M

20
M

25
M

30
M unique sampled User−Agent strings

10−day moving average

Figure 1: Unique HTTP User-Agents sampled per day.

across 1,500 networks in 135 countries. Of course, not all devices
connect to the CDN, however the CDN sees activity from 1.2B
IPv4 addresses in a year, i.e. the vast majority of the active address
space [37]. Traffic observed is for content hosted by current cus-
tomers of the CDN, and may be biased towards customers with a
large footprint, and may change over time as business relationships
shift. User-Agents were sampled at approximately 1 out of 4K HTTP
and HTTPS requests across the CDN platform. The proliferation
of HTTP as the standard network protocol across all connected
devices means that the CDN has visibility into mobile applications,
API traffic [45], embedded devices, and operating system services
in addition to browsers. We conducted daily measurements for 3.5
years, between April 17, 2016 and January 20, 2020, capturing a
total of over 2 trillion User-Agent strings.

Some User-Agent strings relate to popular applications, and we
see many requests carrying the same User-Agent. Figure 1 shows
the daily unique number of User-Agent strings collected. Through-
out our measurement window, we see an increase in the number
of unique strings collected each day, highlighting the increasing
number of applications, and versions of applications, that interact
with the CDN platform. We also find significant churn in collected
User-Agents between consecutive days, between 6 to 13 million
unique User-Agents observed on daydt+1 were not observed on day
dt . This represents more than half of unique User-Agents sampled
each day.

4 MINING USER-AGENT STRINGS
In this section we present our methodology for parsing structured
information from User-Agent strings.

4.1 Methodology Overview
To tackle the problem of extracting information from UA strings,
we develop a semi-automated methodology that takes as input the
User-Agent strings and extracts information about OS, applications,
and device. Our approach needs to be adaptive, as throughout our
measurement window, a period of 3.5 years, new applications have
appeared and major vendors, browsers, and application providers
change the format of UA strings or introduce new UA strings.

Our methodology, summarized in Figure 2, involves three steps:
(i) partitioning of the User-Agent space, (ii) development of parser

IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA Rula et al.

classes for each partition, and (iii) information extraction. Our ap-
proach combines these into an effective solution for maximizing the
coverage of collected UAs, with minimal custom rules. We utilize a
clustering approach, grouping a subset of popular UAs by their edit
distance similarity (Section 4.2). We found that initial clustering
of a subset of popular UAs by their edit distance similarity can
partition the UA space into a tractable set of clusters. Strings in
these individual clusters share a common structure, allowing them
to be simply parsed from common logic. We create a parser class for
each cluster consisting of regular expressions and token processing
logic to match UAs and extract information of interest (Section 4.3).
Given that UAs change over time, we develop a methodology to pe-
riodically identify new clusters of UAs that appear, or existing UAs
that change structure. Our approach provides a scalable approach
to deal with the billions of UAs we sample daily.

4.2 Partitioning the Space: Clustering
Unique UA strings often differ by only a few characters from similar
strings. For example, UAs of the same applications running on
different devices may only differ by the device name (e.g. iPad vs.
iPhone), or operating system version. We leverage this similarity to
make the problem of parsing billions of UAs tractable: performing
clustering on UA strings to partition and reduce the dimensionality
of the problem. We found that most UAs can be clustered into a
few dozens of clusters, and that similar parsing strategies can be
tailored to each cluster, greatly reducing the scope of the problem.
Similarity metric. Since we deal with textual data, i.e., strings,
an obvious option is to use the Levenshtein distance to perform
an initial comparison and clustering of similar UA strings. The
Levenshtein distance takes two strings as input and expresses their
distance by the minimum number of single-character edits required
to convert one of the two strings into the other. This distance is also
commonly referred to as edit distance. The Levenshtein distance is
naturally dependent on the length of the compared strings. For our
approach, we leverage the inverse Levenshtein ratio as the distance
metric, which ranges between 0 and 1, where a value of 0 expresses
equality of two strings and 1 expresses maximum string distance.
Clustering algorithm. For clustering, we use density-based spa-
tial clustering (DBSCAN) [16]. In a nutshell, DBSCAN takes as
input a set of points in a space, and groups points that are closely
packed together. In our approach, each UA string represents one
point, and we leverage the above introduced string similarity met-
ric for our clustering. DBSCAN takes two parameters as input, (i)
the minimum cluster size, (ii) and the parameter epsilon, which
determines the maximum distance between two points to be con-
sidered in the same neighborhood. A higher epsilon value results
in fewer and larger clusters, whereas a lower epsilon value yields
a larger number of smaller clusters and a larger number of outlier
(non-clustered) points. To determine a sensible epsilon value, we
use HDBSCAN, the hierarchical variant of DBSCAN which does
not rely on a fixed epsilon value, and inspect the resulting cluster
hierarchy. Figure 3 shows a dendrogram of the top 20k User-Agent
strings in our dataset for one day during our observation period.
Manual inspection of the resulting clusters (see annotations for
iOS/Android apps, as well as browsers) led us to choose an epsilon
value of 0.3 for clustering, since it effectively clusters UA strings

daily
top 20K

UA strings cluster by
Levenshtein

distance

(?<=\.) {2,}(?=[A-Z])

develop regular
expressions

and custom parsers

string
clusters

offline stage

online stage

all UA strings (?<=\.) {2,}(?=[A-Z])

information extraction pipeline adoption trends

Figure 2: Our methodology’s pipeline: (1) clustering, (2) regular ex-
pression generation, (3) parsing of UAs and extraction of informa-
tion.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

ep
si
lo
n

iOS
apps

browsers
Android apps

Figure 3: Dendrogram: HDBSCAN clustering process of the top 20k
most commonUser-Agent strings based on string similarity in a sin-
gle day. With decreasing value of epsilon, fragmentation in more
and smaller clusters increases. We chose epsilon=0.3 as global cut-
off for cluster forming.

into a manageable number of clusters with high similarity. For our
values (epsilon set to 0.3, minimum cluster size set to 25), there are
33 clusters on that day.
Initial daily clustering.We found that clustering all unique User-
Agents to be too computationally expensive. In light of the long
tailed popularity of User-Agents, we use a subset of popular User-
Agents for the initial clustering. We considered different popular
sets, from top-10k to top-100k unique UAs, and ultimately settled
on the top 20 thousand unique UAs. 1 We note, however, we restrict
only our initial clustering to the top 20k UAs which for a more effi-
cient development of matching algorithms on relevant strings. The
eventual signatures that we develop to process individual strings
are not restricted to this set of UAs and can effectively parse a much
greater number of UA strings.
Aggregating clusters over time. Recall that our goal is to per-
form clustering to partition the UA space captured over a period
of 3.5 years into manageable sets of strings that show common
patterns, which we leverage in the next section to extract relevant
information from the strings. The process described above outlines
the clustering process for a single snapshot, which we conducted
daily for over 3 years, ultimately yielding thousands of clusters
overall. In light of the similarity of many of these clusters over
time (e.g., common browser UA strings are present throughout the
entire time period), and to maintain a set of manageable size, we

1The top 20 thousand unique UAs account between 85-90% of all UAs over the course
of our study.

Who’s left behind? IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.61 Safari/537.36

Mozilla/5.0 (iPhone; CPU iPhone OS 11_2_6 like Mac OS X) AppleWebKit/604.5.6 (KHTML, like Gecko) Mobile/15D100

[FBAN/FBIOS;FBAV/169.0.0.50.95;FBBV/104829965;FBDV/iPhone10,4;FBMD/iPhone;FBSN/iOS;FBSV/11.2.6;FBSS/2;FBCR/AT&T;FBID/phone;FBLC/en_US;FBOP/5;FBRV/0]

Device Operating System OS Version Application Application Version

Device OS VersionApplication Application Version Application Build Carrier LanguageOperating System

Chrome Browser

Facebook Application

Figure 4: Extracting information from User-Agents. Samples for Chrome for OS X (top) and Facebook mobile application for iOS (bottom)
highlight the variety and breadth of host information.

aggregated similar sets of clusters across days, yielding an aggre-
gated set of meta clusters in the end. To merge similar clusters
over time, we rely on the overlapping occurrence of popular UA
strings across days. We first transform each cluster set into a graph,
with nodes identified by their UA string and edges interconnecting
UAs within the same cluster. Each cluster therefore becomes an
independent connected component in this graph. This transforma-
tion is necessary since the output of our clustering is unlabeled
and inconsistent between days. To merge a new clustering graph,
we add edges between nodes in the different graphs that have the
same UA string, effectively connecting the components from the
two snapshots. Our two-step method of first clustering strings on a
daily basis, combined with aggregation across days, ensures that
the final number of clusters stays maintainable, but also ensures
that we catch clusters of UA strings that were visible only for part
of our measurement window, e.g., newly emerging clusters as result
of new applications.
Final cluster output. Merging the clusters from all daily snap-
shots, thus representing 3.5 years worth of captured User-Agent
strings, yielded a total of 107 unique clusters. We find that our
clustering approach returned aggregated clusters with remarkable
similarity. Most clusters can be grouped into common categories,
such as Webkit browser strings (i.e Chrome, Safari), iOS applica-
tions, Android applications, and many cases of popular but unique
UAs for individual applications.

4.3 Classification and Information Extraction
Pipeline

The next challenge is to develop a parser that can accurately identify
a given UA class, and can extract all given information regarding
the OS, application, device, etc. For the clusters generated in the
previous section, we manually craft a regular expression to cap-
ture the features of the cluster’s particular structure. In light of
the structural similarity between certain clusters, a single regular
expression often captures information from several clusters. We
crafted only 35 parsers to capture all 107 clusters. While we were
able to extract a portion of UA information from regular expression
groups alone, for some clusters we found it necessary to use ad-hoc
rules, such as token processing, to extract the required information.
In all we found that custom parsing functions were quite rare: of
the 35 parsers we created, only 6 required custom parsing functions
to supplement regular expression extraction.

For our custom parsing rules, we found that simple manual in-
tervention was sufficient to cover the most common cases. Figure 4
(top) shows an example of our process for popular web browsers.

Metric Description
Application Name Name of the User-Agent application, either browser or ap-

plication (e.g. Safari, Facebook)
Application Version Version of User-Agent application
Operating System Name Name of the User-Agent operating system
Operating System Version Version of the User-Agent operating system
Operating System Build Specific build of the User-Agent operating system
Device Name Identifier of User-Agent device

Table 1: Classes of information parsed from User-Agents.

The common structure is very similar, yet the interior tokens vary
in their information given, the ordering of the information, and the
manner it is displayed. In this example, the parenthesis-enclosed
area presents multiple semi-colon delimited tokens. We are able
to easily parse the details of these tokens with a simple logic –
much easier than attempting to match the multiple combinations
through regular expressions alone. The example in Figure 4 (bot-
tom) presents a common User-Agent from the Facebook application.
In this UA, there exists a series of tokens enclosed in brackets that
are also semi-colon delimited. Each token contains a key-value pair
separated by a forward slash. Our parsing rules simply decoded
each key’s label to our corresponding categories to extract the in-
formation. For example, the token FBDV/iPhone10,4 maps the key
FBDV to our device category, and FBSV/11.2.6 maps the key FBSV
to our operating system version category. This User-Agent is a good
example where regular expression parsing was problematic, since
it was common to encounter different combinations and orderings
of the given keys.

We match a UA to a particular parser class using each class’s
regular expression. In cases where multiple classes match a UA, we
select the class which matches the longest substring within a UA.
While we discovered certain UAs to expose additional device and
application information, we settled on a set of common structured
information available in most UAs, shown in Table 1.

4.4 Classification Efficacy
In this section, we first provide an overview of the information we
harvested from over 3.5 years of daily User-Agent strings, leverag-
ing our semi-automated information extraction method.

In all, our process matched 87.3% of total requests carrying a UA
string, and 58.6% of the unique UAs in our dataset. We found that
most UAs have similar structures and patterns and are able to be
captured by a small number of parser classes. We find that, e.g., on
January 1, 2020 (other days similar), the two largest parser classes
account for roughly 50% of all matched UAs, and the top 5 account
for nearly 75%. In this case, the first parser class is designed to match
the Webkit UA, used by popular browsers such as Chrome, Safari,
and Edge, and the second to match common iOS application UAs.
The remaining UAs have much more variability in their structure,

IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA Rula et al.

total matched OS OS version build app name app version device

property

%
 h

its
 m

at
ch

ed
 d

ai
ly

0
20

40
60

80
10

0

operating system
application
device

Figure 5: Median daily UAs matched and percentage of property in-
ferred using our User-Agent classification approach. Bars show the
median dailymatched requests and properties, error bars showmax
and min over our entire time frame (3.5+ years).

requiring custom parser classes to match and extract, and have
diminishing returns for overall matches. In fact, the bottom 25
parser classes only account for some 4% of User-Agents on that day.

To assess the effectiveness of the extraction of information using
the regular expressions we derived, we plot the percentage of daily
requests from which we could extract information in Figure 5. For
the large majority of these UA hits we can extract both the OS and
the OS version, and for half of them the OS build. In the majority of
the cases we can also extract the application name and version. For
devices, the coverage is lower, but still significant, i.e., for about
one third of the requests we can infer the device. Then, we examine
the variability over time of successfully extracting the information.
To this end, we plot the error bars in Figure 5 that represent the
minimum and maximum percentage of requests that our methodol-
ogy can extract information from for each type, for each day in our
measurement window. We notice that the range is rather stable,
staying within a 20-25% window across all types for the entirety of
our dataset.

4.5 Classification Results and Filtering
Our processing pipeline extracts application and operating system
information from User-Agents. The largely unstructured nature of
User-Agents means that we observe noise in our extracted results.
We filtered out these ephemeral applications, which only occur a
few times throughout our collection period, ignoring those which
were observed fewer than 10,000 times. This filtering step leaves us
with 35.2 thousand applications, from the original 2.5million, for
the remainder of this analysis. We also found application versions
to contain large numbers of low hit values, with 99% of all detected
versions seeing fewer than 10 hits over our observation period. We
further restrict the set of individual versions of applications we
analyze to those with more than 1,000 hits, leaving us with 165
thousand distinct application versions.

We found thatWeb browsers represent aminority of User-Agents
in our dataset, with popular browsers,2 comprising only 38.6% of
detected UAs. The remaining 61.4% of UAs represent the growing
fraction of non-browser HTTP traffic on the Internet. While mobile
apps make up a large fraction of this set, operating system services

2For popular browsers we selected User-Agents for Chrome, Safari, Firefox, Opera,
Internet Explorer and Edge.

such as software update daemons, and desktop applications also
exist. With regards to the popularity of Web browsers, we find
a clear divide between desktop and mobile platforms. Desktop
operating systems show browser User-Agents predominantly, with
96.6% and 82.2% forWindows andMac OS X respectively. Onmobile
platforms, however, we find that browsers make up only 29.4% of
User-Agents on Android, and only 13.2% of iOS User-Agents.

5 A SOFTWARE ECOSYSTEM IN FLUX
With our method to extract viable information from User-Agent
strings in hand, we now analyze the release and adoption of Internet-
connected applications. We describe our methodologies for infer-
ring software release dates from our dataset, introduce metrics
that can capture and describe the distribution of software updates
across the device eco-system, their timing aspects, update fidelity,
and study dominant trends in software adoption across different
applications and platforms.
An illustrative example. Figure 6 presents an example overview
of what we find via the analyses in the following sections. For each
day over 3.5 years, the figure shows the fraction of requests seen
from different versions of the Chrome browser running on Android.
Each contiguous color area corresponds to a unique version. The
dashed vertical lines denote detected release dates for new versions.
The two, key points are: (i) new versions quickly reach adoption
of about 50% to 60% and then the adoption increases more slowly,
and (ii) 22% of the requests are from versions that are more than
30 days out-of-date and 6% are over 300 days out-of-date, which
suggests that there is significant opportunity for malicious actors
to exploit vulnerable software. In the remainder of this section, we
develop metrics to capture and study such adoption trends more
broadly.
Request counts vs. device population. The counts of requests
seen by the CDN for different versions of an OS, browser, or ap-
plication are related to the number of devices/users making these
requests, and we can make some general inferences about the de-
vices/users, even though we do not know the actual counts of
devices with a given version at a given time. The counts of requests
for different versions can vary by 6 orders of magnitude, fromwhich
we infer the more popular versions on the devices. When we begin
to see requests from a given version, we infer that some devices
have it installed. We see both quick and slow ramp up of requests,
from which we infer how quickly a new version has been installed
on devices, for example, via automatic updates or requiring user
action. If the counts from a given version dominate the counts
from all prior ones, then we infer that the majority of devices are
now using that version. When we present results in terms of the
percentages of requests seen from a given version, the percentages
should be viewed as rough approximations of the percentages of
devices/users with that version.

5.1 Inferring Software Release Dates
We numerically describe the state of deployed applications. For this
analysis, we utilize the subset of applications and versions described
previously in Section 4.5.
Data-driven software release detection.We derive the software
release date of individual versions from their appearance in our

Who’s left behind? IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA

2016-07 2017-01 2017-07 2018-01 2018-07 2019-01 2019-07 2020-01
Date

0.0

0.2

0.4

0.6

0.8

1.0

Ad
op

tio
n

Fr
ac

tio
n

Figure 6: Version adoption of Chrome Browser on Android. In the above stacked area chart, the colors are used to identify adoption of individ-
ual browser versions. Each contiguous color area corresponds to a unique version. The dashed vertical lines denote detected release dates for
new versions. Note that new versions quickly reach adoption of about 50% to 60% and then the adoption increasesmore slowly, and throughout
the 3.5 years, lingering, older versions remain active for months to years. We find 22% of the requests are from Chrome versions that more
than 30 days out-of-date and 6% are over 300 days out-of-date.

Jun.-19 Sept.-19 Dec.-19
Date

0.00

0.01

0.02

0.03

0.04

0.05

Ad
op

tio
n

Fr
ac

.

68.0
69.0
70.0
71.0

Figure 7: Observed “beta” releases for Firefox browser onWindows.
Solid lines plot the adoption rate for each version, dashed lines plot
the calculated release date. Beta releases consistently account for 1̃%
of population.

dataset. While some popular application release dates are readily
available, many are not. Given the size of our application set stud-
ied (some 35,000 applications), it is infeasible to mine all available
software release notifications—even if such information was widely
available—and we instead opted to infer release dates for all appli-
cations from our dataset itself. We refer to an application’s version
by the most specific version in a given UA. Changes in major ver-
sion numbers, for instance, are arguably arbitrary and hide certain
update dynamics. We are interested in adoption of distinct software
builds in order to best understand the behavior of software update
dissemination across connected devices.

One consequence of this decision is that many individual soft-
ware versions appear prior to their official release date. This is com-
monly due to testing, or “beta” versions of an application which are
given to a small subset of active users for testing. For example, we
originally discovered that Firefox releases were detected at roughly
30 to 60 days before their official release. Further investigation re-
vealed that new versions of Firefox show adoption around 1-2% for
a period of time before their official release. Mozilla maintains a
separate release channel for Beta, which operates one major version
ahead of the current release. Figure 7 plots this behavior, showing
approximately 1% of the population shifting to a future release
immediately after a new release. We ignore most of these spurious

-50 -25 0 25 50
Difference (days)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

iOS

-50 -25 0 25 50
Difference (days)

Android

(a) Facebook (app)

-50 -25 0 25 50
Difference (days)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

iOS

-50 -25 0 25 50
Difference (days)

OS X

(b) Safari (browser)

Figure 8: Validation of release date inference across 2 popular appli-
cations in our dataset, and across different platforms.

testing versions by calculating the software release date of a par-
ticular version as the first date on which its traffic share exceeds
1% of the overall application traffic share on that day. However,
we manually identified a handful of applications where this sort of
live trial of upcoming versions exceeds 1% adoption, and thus for
these rare cases we increased the minimum threshold for adoption
percentage from 1% to 5%.
Validation of release date inference. In total we inferred 148,041
release dates of application versions. We validated our release date
inferences against publicly announced release dates from Google
Chrome, Safari and Firefox browsers, and the Facebook mobile
application. In all we were able to validate 540 application versions.
We find that our inferred release dates are similar to the published
releases, with 74% of versions within 2 days of inferred release dates
and 97% of inferred release dates are within 20 days of the published
date. Figure 8 plots this comparison for two popular applications.
Release frequency. With our ability to automatically derive soft-
ware release dates, we next measure the time between an applica-
tion’s consecutive releases. Overall we find a very high frequency
of application releases, with a median value of 10 days between
releases. The 25th and 75th percentiles range between 4 and 25
days, respectively. We find that the release frequency varies widely
between applications, which we illustrate with a subset of popular
applications. Figure 9 plots the median time between releases, with
the error bars denoting the inner quartiles, for these popular ap-
plications. We observe a wide range of behavior, from iOS Safari’s
median 51 days between releases, all the way to the Facebook app
on Android with a median of 6 days between releases.

IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA Rula et al.

Fa
ce

bo
ok

Fa
ce

bo
ok

Ch
rom

e
Ch

rom
e

Fir
efo

x

Sa
far

i
Sa

far
i

0

20

40

60
Da

ys
Windows NT
Android
iOS
OS X

Figure 9: Median days between releases for a set of popular applica-
tion. Error bars represent middle quartiles.

2016-07 2017-07 2018-07 2019-07
Date

0.00

0.25

0.50

0.75

1.00

Ad
op

tio
n Adoption

Cumulative Adoption
Survival

Figure 10: The blue line (which initially coincides with orange line)
represents application adoption for Chrome on Android version
52.0.2743.98 over time. The orange line represents the cumulative
adoption, including all versions ≥ 52.0.2743.98.

5.2 Metrics to Capture Version Adoption
For our update analysis below, we discard any versions which
existed on the first day of our data collection, as our method to
infer their release date does not apply.
Version adoption. In order to characterize a software’s population
at any point in time, we define version adoption to be the fraction
of an application’s requests from any particular version. Under-
standing the characteristics of version adoption are important for
modeling software and security patches, and understanding the
extent to which existing update mechanisms influence software
distribution. To capture temporal properties of updates, we mea-
sure version adoption over time—the adoption rate. The blue line
in Figure 10 represents the individual version adoption for version
52.0.2743.98 of Chrome for Android. Common to many applica-
tions, the version grows quickly after being released, reaching 50%
of global adoption after only 8 days. Then, the growth rate slows.
The version reaches a maximum adoption of 63% at 31 days after
release, after which it incurs a steep drop. The drop starts when a
new version is released. This indicates that there is a population of
application users which maintain very up-to-date software.
Cumulative adoption. Due to the fast pace of software release
versions, the scope of any one particular version may not be descrip-
tive of the state of a software population. We introduce another
metric—cumulative adoption —which describes the fraction of a
population which have adopted a given version or a more recent
one. We use the expression y ≥ x , where x is the given software
version, and y is the versions the same as or newer than x , to
express this adoption. Similar as above, the time taken to reach
a particular cumulative adoption is the cumulative adoption rate.

100 101 102 103

Adoption Rate (days)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

50% Adoption (82% Versions)
75% Adoption (49% Versions)
90% Adoption (7% Versions)

(a) Adoption rate for all application versions.

100 101 102 103

Cumulative Adoption Rate (days)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

50% Cumulative Adoption (99% Versions)
75% Cumulative Adoption (97% Versions)
90% Cumulative Adoption (79% Versions)

(b) Cumulative adoption rate for all application versions.

Figure 11: Temporal properties for version adoption across all op-
erating systems. The adoption rates shown are conditional on indi-
vidual versions reaching the specified percentile of adoption. Only
7% of all application versions reach 90% adoption. 21% of versions
never reach a cumulative adoption of 90%.

The orange line in Figure 10 represents the cumulative adoption
rate, which measures the adoption of all versions ≥ 52.0.2743.98.
The slow, steady increase reveals that there is a significant portion
of the application’s population—around 35% in this case—which
update their software at a lower frequency than the application’s
release cycle. That the cumulative adoption rate never reaches 100%
means that there exists a small fraction of the population which
maintains software older than this version for the three year du-
ration of our measurements. Cumulative adoption is the inverse
function of the Survival function S(t), which is used in related
work to model vulnerable application populations [30]. We chose
cumulative adoption for this work instead of the Survival function
because we believe it is more intuitive for measuring overall update
adoption. For comparison, we also plot the Survival function in
Figure 10.

5.3 Tracking Version Lifecycles
Time to adoption. To measure the rate of software adoption of
application versions, we calculate the time taken from its release to
reach 50%, 75%, and 90% of an application’s population. However,
note that many versions fail even to reach these percentiles. Previ-
ous studies [30, 40] have also reported that the adoption of updates
can be low for the small set of applications they studied. While
72% all versions reach 50% adoption, only 56% reach 75% adoption
and only 27% reach 90% adoption. If we weight versions by hits,
which gives more weight to the popular versions, then fewer reach
the higher percentiles: 49% reach 75% adoption and only 7% reach
90%. Figure 11a plots the distribution, in days, of the time taken

Who’s left behind? IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA

100 101 102 103

Cumulative Adoption Rate (days)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Android
OS X
PlayStation 4

Windows NT
iOS

(a) Time to 50% cumulative adoption.

100 101 102 103

Cumulative Adoption Rate (days)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Android
OS X
PlayStation 4

Windows NT
iOS

(b) Time to 75% cumulative adoption.

100 101 102 103

Cumulative Adoption Rate (days)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Android
OS X
PlayStation 4

Windows NT
iOS

(c) Time to 90% cumulative adoption.

Figure 12: Platform is a strong determinant of application update behavior.

for individual software versions, weighted by hits, to reach a given
percentile of the hits from the given application, conditioned on
the version actually reaching that percentile. On the whole, we find
that software versions that do reach 50% population share do so
relatively quickly, with the mode occurring at one day, and 90% of
versions reaching 50% share within 2-3 days. Those few versions
that do reach 75% and 90% also do so expediently, with modes at 5
and 12 days, respectively.
Adoption vs. cumulative adoption over time. We believe that
the high frequency of application releases limits the overall version
adoption. We found that, in general, version adoption rates were
higher when the version was the latest version for longer periods.
Intuitively, as newer versions replace the latest, there is less time
for users to adopt any individual version. When a given software
version has corrected vulnerabilities that were present in a prior
version, the adoption rate of that individual given version provides
only a partial view into the extent that these vulnerabilities have
been removed from the application’s user base. As an example,
suppose the given version of Chrome on Android in Figure 10
corrected some vulnerability, then the correction would have 75%
cumulative adoption after about 81 days and 90% after 423 days.

Adoption rates of individual versions are do not reveal the full
picture, due to the low number of individual versions which actually
reach high levels of adoption. We believe cumulative adoption is
more representative of population behavior, especially when mea-
suring high adoption fractions: 97% and 79% of versions reach 75%
and 90% cumulative adoption respectively, which is qualitatively
higher than the percentages for (individual version) adoption of
49% and 7%. Figure 11 plots the adoption and cumulative adoption
rate for all application versions in our dataset. We find that cumula-
tive adoption rates are substantially longer than individual version
adoption rates. The increased coverage of cumulative adoption cap-
tures the complexity of software updates which have high release
velocities, showing that these require more time to achieve high
levels of adoption. The figure highlights the challenges for high
levels of update adoption. Of the 79% of versions which reached
90% cumulative adoption, half required 145 days to achieve, and
10% required more than 383 days.

5.4 The Platform Effect
We find that application update behavior differs significantly across
platforms, especially at the higher percentiles of adoption. Figure 12

plots the 50th, 75th and 90th percentiles of cumulative adoption for
all applications, grouped by operating system.We include 2 desktop,
2 mobile and one set-top box as platforms for comparison. Indeed,
80% of the applications of PlayStation4, iOS, Android, Windows NT,
reach 50% in 8 days as shown in Figure 12a.With the exception of OS
X, 80% of all applications reach 50% cumulative adoption within 20
days. Turning our attention to 75% cumulative adoption (Fig. 12b),
80% of the applications on PlayStation4, iOS, and Windows NT
reach 75% cumulative adoption rate in around 12 days. However,
80% of applications in Android and OS X reach 75% cumulative
rate in around 50 and 100 days, respectively. Finally, 80% of the
application of PlayStation4 reach 90% cumulative rate in around
12 days, but for the other platforms 80% of the applications reach
90% adoption rate in between 100 (iOS) and 300 days (OS X), see
Figure 12c. Next, we investigate the differences between platforms.
Embedded platforms. The PlayStation 4 gaming console has the
quickest and most comprehensive adoption behavior of all plat-
forms. Nearly 70% of applications reach 50% adoption on the same
day of the release, and 65% reach 90% cumulative adoption after
only one day. Applications on this platform reach the 95th per-
centile of 90% adoption in 19 days, ten times faster than iOS, the
next quickest platform. If we look at the process of software up-
dates on this platform, there are several clues to its success, with
several default options and norms which may contribute to the
high rate of update compliance. There is a default mode when the
device is not in use which downloads updates. When the device
prompts the user to update at next use, this greatly reduces the
burden of updating. More importantly are the norms surrounding
game/application updates. Many applications which allow players
to interact online require the latest software version. With online
gameplay being a large part of many modern games, this forces
update compliance for use. Relatedly, many application updates
require the latest operating system updates as well, creating a halo
effect for operating system compliance.
Mobile platforms. We next look at mobile platforms, comparing
application update behavior between iOS and Android. Overall we
find applications on Android to take 3-10 times longer to reach
similar adoption when compared to iOS. The median application
takes 4 days to reach 75% cumulative adoption on iOS, while taking
38 days on Android. Both Android and iOS have official software
release channels, Google Play and AppStore respectively, which
are managed by the operating system owners. Since the beginning

IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA Rula et al.

100 101 102 103

Days Behind

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Days Behind

(a) Distribution of days behind for detected
versions on Jan. 1, 2020. 60% of versions are
fully up to date, though with a long tail.

Jan. 2017 Jan. 2018 Jan. 2019 Jan. 2020
Date

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n

of
 p

op
ul

at
io

n >30 days behind
>100 days behind
>300 days behind

(b) Days behind over time for all platforms
and applications for multiple thresholds.

Jan. 2017 Jan. 2018 Jan. 2019 Jan. 2020
Date

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fr
ac

tio
n

of
 p

op
ul

at
io

n Android
OS X
Windows NT
iOS

(c) Fraction of population that are at least
100 days behind, by platform.

Figure 13: Days behind measurements across multiple time frames and platforms.

of our measurement period, both Android and iOS platforms pro-
vide options for automatic application updates. Multiple studies
have previously outlined how the fractured nature of the Android
ecosystem contributes to poor adoption of operating system up-
dates [1, 31]. It is possible that a similar effect is occurring with
applications as well. Android also has wider use of App Stores other
than the official Google Play, such as the Amazon App Store [4]
along with many others. It may be that Android applications on
these alternative marketplaces are released at different times, and
since we have no way of knowing the provenance of detected appli-
cations, this may account for some of the lag in application updates.
Desktop platforms. Last we compare application update behavior
between the Windows and Mac OS X desktop platforms. In all we
found applications on Mac OS X to have the lowest cumulative
adoption rate, across all percentages. Applications running on Win-
dows show comparable rates to the above mobile platforms, yet
have a long tail reaching 90% cumulative adoption. Again, in the
case of Mac OS X, the user has to agree before downloading updates
and this potentially slows down adoption rates.

6 WHO’S LEFT BEHIND?
The currentness of running software is dependent on a variety of
factors, and our tools allow us to identify and track these factors.
In this section, we track software currentness on a macroscopic
level. In particular, we are interested in the population of users
that run an outdated version of a given application. There exists
a fraction of each application’s population which are running out-
dated versions. In Figure 6 we exemplified this using versions of the
Chrome browser on Android, where each version is represented
in a distinct color. We observe that while new versions typically
reach high adoption rates of some 70%, we observe an increasing
number of old versions that remain “out there” and in use.

6.1 Capturing Behindness
The age of any version is the number of days between the current
date and the release date of that version. A large age of any version
may not indicate that a population is outdated or vulnerable, and
instead depends on the release decisions of application owners.
Behindness metric. Amore appropriate metric for understanding
this vulnerable client population is to measure the number of days

that an application version is out-of-date, which we refer to as days
behind. We calculate an application version’s days behind as the
number of days which have passed since a newer version of the
application has been released. For example, clients running the
latest version of an application,vi , are considered zero days behind.
If a newer application version vi+1 was released 10 ago, then all
clients running version vi would be 10 days behind, and those now
runningvi+1 are 0 days behind. As an example, in Figure 6, the first
detected version is at April 26, 2020 (pink area), which 6 months
after release is at 75% cumulative adoption, and thus all of the other
versions that existed prior to its release are behind by at least 6
months, yet still account for 25% of the requests. Figure 13a plots
the distribution of the days behind for all applications from the
viewpoint of January 1, 2020. On this date, we find that 60% of all
applications are running the latest software versions – that is 0
days behind. The remaining 40% exhibit a long tail, with 20% of the
population at least 100 days behind their latest software version,
and 10% over 400 days behind.
Behindness over time. To view this metric over time, Figure 13b
plots the fraction of our population which are 30, 100 and 300 days
behind. A complication is that when the viewpoint is at start of the
observation period, we have not yet inferred the software release
dates of the various applications, Section 5.1, and thus we can not
compute the number of days behind. Thus we need a warm-up
period. In principle, we wait until the first release date after the
start of observation period and then another 300 days, for example,
to compute the percentage of requests that are that far behind. A
further complication is that these release dates vary for the different
applications. Based on the statistics for days between releases, Fig-
ure 9, we judge that ball-park warm-up periods of 150, 250, and 450
days, respectively, are reasonable to get estimates of the percentage
of requests that are 30, 100, and 300 days behind. Thus, looking
at the results in Figure 13b after the warm-up periods, we see an
increasing trend of the percentage of requests that are behind.
Behindness per platform. With our metric of days behind in
hand, we next study the populations of different platforms. Fig-
ure 13c shows, for four popular operating systems, the fraction of
daily requests (from all applications running on the given OS) that
are more than 100 days behind. Between these platforms, Android
and OS X have the largest fraction of the population with applica-
tions greater than 100 days behind. In contrast, iOS has fewer than

Who’s left behind? IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA

0 200 400 600 800 1000 1200 1400
Days Behind

0.4

0.6

0.8

1.0

CD
F

Android 6
Android 7

Android 8
Android 9

Android 10

(a) Android.

0 200 400 600 800 1000 1200 1400
Days Behind

0.4

0.6

0.8

1.0

CD
F

iOS 9
iOS 10

iOS 11
iOS 12

iOS 13

(b) iOS.

Figure 14: Distribution of days behind of requests partitioned per
operating system version for Android and iOS on January 1, 2020.
Application behindness increases in older operating systems.

15% of its population with versions more than 100 days behind. The
sharp increases in Figure 13c) are due to highly adopted versions,
of very popular applications, first reaching 100 days behind. For ex-
ample, the sudden increase observed for Windows NT in July 2017
is due to Microsoft’s Edge browser version 13.10586 first becoming
100 days behind the latest version 14.14393. At the time of this tran-
sition, version 13 occupies roughly 40% of Edge’s population, and
Edge’s popularity increases Window’s behindness by 7% overall.

6.2 Understanding Root Causes of Behindness
Our results show that platforms have a profound impact on the
behindness of applications. In this section we investigate further the
root causes by analyzing the effect of the age of the operating system
and the device on application behindness. While the motivations
surrounding out-of-date applications are complex, we found several
correlations between out-of-date applications and the operating
systems and devices they run on. Using a single day snapshot from
January 1, 2020, we investigate these causes.
Impact of operating system aging. We discovered that applica-
tion behindness was higher on older operating systems. Figure 14
plots the cumulative distribution of application behindness for ma-
jor versions of Android and iOS. The figure illustrates this trend
clearly, with the latest mobile operating systems having applications
that are highly up-to-date (typically within 10 days), and older oper-
ating systems showing greater application behindness—increasing
with the oldest OS versions. While this does not provide direct

iPhone 4S
iPhone 5

iPhone 5S
iPhone 6

iPhone 6S
iPhone 7

iPhone 8(X)
iPhone XS
iPhone 11

fraction of hits

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iOS 9 iOS 10 iOS 11
iOS 12 iOS 13

(a) iOS version on iPhone devices.

Galaxy Note 3
Galaxy Note 4
Galaxy Note 5
Galaxy Note 8
Galaxy Note 9

Galaxy Note 10

fraction of hits

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Android 5 Android 6 Android 7
Android 8 Android 9 Android 10

(b) Android versions on Galaxy Note devices.

Figure 15: Fraction of requests matching a specific OS version on
January 1, 2020 running on select devices. Older devices tend to run
older OS versions, in part due to non-availability of OS updates for
older devices, and in part due to a lack of action by users.

causation for outdated applications, since that may be dependent
both on user behavior and/or application availability for different
operating system versions, it does show that the older one’s operat-
ing system the more likely for applications to be behind the latest
updates.
Impact of device aging. We now consider the age of the devices.
Figure 15 plots the fraction of requests seen from different operating
system versions, partitioned by different generations of the device.
We selected the Galaxy Note running Android and the iPhone
running iOS, both for their popularity and long history of devices
within the same line. The figure illustrates that newer devices tend
to run newer operating systems, and thus, as we showed in the
previous section, newer application versions. Moreover, note that
older Android and iOS devices have not been updated to recent
operating system versions at all, which suggests causation, and
which we investigate next.
Device lock-in effects. For both studied devices, the iPhone and
the Galaxy note, it is evident that older models tend to run an
older version of the OSes. A closer investigation shows that none
of the iPhone 4 or 5 devices run iOS 13. Moreover, none of the
Samsung Galaxy Note 3, 4, and 5 runs Android 8 or later. Indeed,
the latest version of operating systems are not supported by some
older devices of Apple [7] and Samsung [39]. Thus, the owners of
such devices can not update them to the latest version. This is true
either because these devices are not anymore supported or because
the support is delayed, e.g., the Galaxy Note 9 could be updated

IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA Rula et al.

0 10 20 30 40 50 60 70 80 90 100

(a) Android.

0 10 20 30 40 50 60 70 80 90 100

(b) iOS.

0 10 20 30 40 50 60 70 80 90 100

(c) Mac OS.

0 10 20 30 40 50 60 70 80 90 100

(d) Windows.

Figure 16: Per country: % of requests that are behind more than 100 days.

to Android 10 only in late January 2020, although Android 10 was
released in September 2019.

We investigate further whether these outdated operating systems
on devices are restricted by the devices themselves, through a lack
of support for later OS versions, or by intentional non-updates.
We find that devices are strongly associated with a single major
version of an operating system. For the top 1, 000 Android devices
on January 1, 2020, we observe on average 89% of a device’s hits are
from the same OS major version. In particular, for 40% of the top
devices, we see only a single major OS version, and those devices
for which we observe at least two major OS versions have only 16%
of hits in the next largest version.
User fatigue. Figure 15 clearly shows that some newer devices,
both iPhone as well as Samsung Galaxy Note devices, that could
have been updated to the latest version of the OS, in fact, are not.
This is a strong indication that the willingness of a user to update its
device plays an important role. It also shows that even if automatic
update mechanisms are in place by default, some of the users may
even opt-out, and thus, reduce the effectiveness of such update
mechanisms.
Device lock-in vs. user fatigue. To compare the impact of device
lock-in effect to user fatigue, we look at the population fraction and
device support of the latest operating system release for both iOS
andAndroid.With the latest iOS release, we find the effects of device
lock-in and user fatigue to be roughly equivalent. We find that 88.8%
of iOS requests come from devices which support iOS version 13,
yet only 76% of iOS requests come from this latest version. This
reveals 11.2% of requests originate from active devices which are
locked-out of future OS releases, and 12.8% of requests from devices

which have been deliberately un-updated. With Galaxy Note, the
device lock-in effect is much more pronounced. We find that only
8.2% of Android requests are from devices which support Android
10, leaving 91.8% of devices locked-out of the latest OS version.
Even including Android 9, we still find that 42.7% of requests come
from devices which support neither version. While user fatigue
exists for the latest version – only 3.4% of requests are from Android
10, while 8.2% are from devices that support it – the effect is greatly
overshadowed by the device limitations.

6.3 Geographic View
We next study the impact of geography on application currentness.
Figure 16 shows per country the fraction of requests from applica-
tions whose software version is behind at least 100 days, partitioned
per platform. Across all platforms, we observe that less-developed
countries tend to show a higher share of outdated requests when
compared to industrialized nations. We see this trend particularly
pronounced for Android devices, see Figure 16a, where some cen-
tral African countries show up to 90% of requests coming from
applications that are more than 100 days behind. We speculate that
this high level of behindness relates to the use of cheap devices that
often run outdated Android versions, hence not giving the user the
possibility to update applications to current versions. We note that
this trend is less-pronounced for iOS (Figure 16b), possibly a result
of Apple’s policy to also provide iOS updates for older hardware.
Eyeballing desktop platforms, we find that Mac OS shows a similar
pattern, with most industrialized countries showing high levels of
currentness, and African countries showing high levels of outdated
requests, but also high shares of outdated requests from Syria, Saudi
Arabia, and Iran. Windows, on the other hand, shows a rather even

Who’s left behind? IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA

distribution globally, with the exception being China that shows
the highest levels of outdated Windows requests. The phenome-
non of old Windows versions in China has been reported several
times [8]. To illustrate the variability for a few, non-randomly se-
lected countries, the percent of requests from Android versions that
are out-of-date by more than 100 days is: 17% Germany, 20% Russia,
21% Japan, 22% Egypt, 24% USA, 27% Argentina, 32% Canada, 36%
India, 40% China, and 63% Nigeria. An independent very recent
study [26], also confirms that devices, particularly mobile ones,
in developing countries often have legacy browsers. Overall, we
find that the adoption of current software is highly unevenly dis-
tributed geographically, potentially putting less-developed regions
at a greater risk for cyber threats as a result of vulnerabilities in
outdated software.

7 DISCUSSION
In this section we discuss implications of our work for the research
community, software vendors, and policy makers.
Timely reporting of the state of application updates. Timely
and comprehensive updates are essential for security strategies, yet
we uncovered multiple challenges in this area. Our study illumi-
nates the limitations inherent to any application updating strategy
at scale. We found that only 79% of all application versions ever
reach a cumulative adoption rate of 90%. Moreover, adoption of new
software versions varies widely between applications and across
platforms, which our analysis strongly reflects. Our work presents
a first step towards a principled comparison of these different ap-
proaches, allowing comparison of adoption practices across appli-
cations, operating systems, and devices. For example, our study
unveils that devices with updated OSes tend to adopt newer applica-
tion versions. Thus, it is imperative to increase the user awareness
of OS updates as this can have a domino effect on adopting newer
application versions. Moreover, our longitudinal analysis allows for
comparison of the effectiveness of strategies in the wild and also
helps in assessing the effectiveness of efforts by vendors to improve
the adoption of new versions of applications over short as well as
long observation periods. It also allows for the estimation of the
population with potentially vulnerable software over time.
Device lifetimes. There is an increasing debate across policy mak-
ers regarding the sustainable consumption and device durability
of end user products, including personal computers and smart-
phones. Regulatory bodies, e.g., the European Union Parliament,
are in the process to extend consumer protection laws to eliminate
“incompatibility obsolescence”, and discuss introducing a “right
to repair” [20, 33] for older smartphones and laptops. Our results
show that any legislation aiming to extend product lifetimes (e.g.,
the “right to repair”) must take upgradeability of the software run-
ning on devices into account. Today, older devices often cannot be
updated to the most recent OS versions. Potential legislation that
ensures continued support, even for older devices, could not only
extend device lifetimes, but also reduce software behindness and
ease related cybersecurity issues.
Target regions for improvements.Our results show pronounced
differences across geographical regions when it comes to the cur-
rentness of applications. These insights can inform direct efforts

towards improving update adoption in populations with out-of-
date software. In this study, we identified that populations in parts
of Africa and Asia lag behind the rest of the world in active soft-
ware versions. While we do not comprehensively analyze the root
causes of software behindness in specific regions, we identified
that older and non-upgradeable devices strongly impact software
behindness. Our results also show that continued availability for
support for older devices could, in turn, significantly improve soft-
ware behindness in these regions. Improving software behindness
may also require additional investments in network infrastructure
and broadband connectivity. The vast majority of Internet users
in Africa use the cellular network for access [42], and charges for
cellular traffic might discourage users from updating. Pricing mod-
els that discount traffic (even offer it as a free service, similar to FB
free basics program [17]) related to the operating system and ap-
plication updates could improve software behindness and security
in these regions. Using longitudinal analysis it is possible to assess
the impact of pilot investments on the currentness of applications
as well as inform policy making and future investments. As part of
our future agenda, we would like to detect populations of particu-
lar networks that lag behind and understand the root causes, e.g.,
specific types of networks and businesses that inhibit updates.
Human factors. Despite the effort by the industry to increase the
adoption of application updates and deal with bugs and vulnera-
bilities, our study shows that a significant fraction of applications
are not updated, even if the device, as well as the software running
on it, could be updated. Yet, our analysis also shows that differ-
ent updating strategies employed by different vendors on different
platforms indeed show a measurable effect on software behind-
ness, boding well for advanced updating strategies that include
easy opt-in to automatic updates, and other means to encourage
end-users to keep software current. There are important human
factors, including the awareness of the public about the danger
of not updating software, and the individual decision, or the lack
thereof, of end-users to either download and install updates, or to
enable automatic updates. Previous studies conducted surveys to
understand how user characteristics affect attitudes towards mobile
application updates [21, 29, 44]. Although these studies are very
useful, e.g., to understand why users turn off automatic updates
based on their previous experience or to avoid disruption of settings,
unnecessary reboots, compatibility issues, or changes in the user
interface, they typically involve only a few hundred participants.
We believe that studying these factors at the scale that our data
can support is a fundamental step to better understand the matter
and increase security in the Internet. Our analysis can assess the
impact of vendors’ campaigns to increase user awareness of these
issues and provide useful feedback on raising awareness based on
empirical data.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Diego Perino,
for their very constructive feedback. Georgios Smaragdakis was
supported by the European Research Council (ERC) Starting Grant
ResolutioNet (ERC-StG-679158).

IMC ’20 October 27–29, 2020 Pittsburgh, PA, USA Rula et al.

REFERENCES
[1] 2018. Android Security 2017 Year In Review. Android Open Source

Project, https://source.android.com/security/reports/Google_Android_Security_
2017_Report_Final.pdf.

[2] 2019. Android Security 2018 Year In Review. Android Open Source
Project, https://source.android.com/security/reports/Google_Android_Security_
2018_Report_Final.pdf.

[3] 2020. WhatIsMyBrowser.com Developers. https://developers.whatismybrowser.
com/useragents/explore/hardware_type_specific/phone/.

[4] Amazon. 2020. Amazon Appstore App For Android. https://www.amazon.com/
gp/mas/get/amazonapp.

[5] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z.
Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou. 2017.
Understanding the Mirai Botnet. In USENIX Security Symposium.

[6] Apple. 2020. Apple App Store. https://www.apple.com/ios/app-store/.
[7] Apple. 2020. Apple security updates. https://support.apple.com/en-us/HT201222.
[8] K. Chiu. 2020. Windows 7 is gone, but China’s dedicated users

aren’t ready to let go. https://www.abacusnews.com/culture/
windows-7-gone-chinas-dedicated-users-arent-ready-let-go/article/3046210.

[9] CISCO. 2020. Cisco Annual Internet Report (2018–2023) White Pa-
per. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html.

[10] US Federal Trade Commission. 2016. FTC To Study Mobile Device Industry’s
Security Update Practices. https://www.ftc.gov/news-events/press-releases/2016/
05/ftc-study-mobile-device-industrys-security-update-practices.

[11] L. F. DeKoven, A. Randall, A. Mirian, G. Akiwate, A. Blume, L. K. Saul, A. Schul-
man, G. M. Voelker, and S. Savage. 2019. Measuring Security Practices and How
They Impact Security. In ACM IMC.

[12] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N. Weaver, D.
Adrian, V. Paxson, M. Bailey, and J. A. Halderman. 2014. The Matter of Heartbleed.
In ACM IMC.

[13] Z. Durumeric, E. Wustrow, and J. A. Halderman. 2013. ZMap: Fast Internet-Wide
Scanning and its Security Applications. In USENIX Security Symposium.

[14] P. Eckersley. 2010. How Unique Is Your Web Browser?. In Privacy Enhancing
Technologies (PETS).

[15] Ericsson. 2020. Mobile data traffic outlook. https://www.ericsson.com/en/
mobility-report/reports/june-2020/mobile-data-traffic-outlook.

[16] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. 1996. A Density-based Algorithm
for Discovering Clusters a Density-based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. (1996).

[17] Facebook. 2020. Facebook: Free Basics. https://connectivity.fb.com/free-basics/.
[18] Federal Trade Commision. 2018. Mobile Security Updates: Understanding the

Issues.
[19] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. 1999. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. IETF. http:
//tools.ietf.org/rfc/rfc2616.txt

[20] Natasha Lomas for techcrunch.com. 2020. European law-
makers propose a ’right to repair’ for mobiles and laptops.
[online] March 11, 2020, https://techcrunch.com/2020/03/11/
european-lawmakers-propose-a-right-to-repair-for-mobiles-and-laptops/.

[21] A. Forget, S. Pearman, J. Thomas, A. Acquisti, N. Christin, L. Faith Cranor, S.
Egelman, M. Harbach, and R. Telang. 2016. Do or Do Not, There Is No Try:
UserEngagement May Not Improve Security Outcomes. In USENIX SOUPS.

[22] S. Frei, T. Duebendorfer, and B. Plattner. 2009. Firefox (In)Security Update
Dynamics Exposed. ACM CCR 39, 1 (2009).

[23] Google. 2020. Google Play Store. https://play.google.com/store.
[24] J. Kline, A. Cahn, P. Barford, and J. Sommers. 2017. On the Structure and Charac-

teristics of User Agent Strings. In ACM IMC.
[25] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T.

Prescher, M. Schwarz, and Y. Yarom. 2018. Spectre Attacks: Exploiting Speculative
Execution. ArXiv e-prints (Jan 2018). arXiv:1801.01203

[26] F. Li. 2020. Shim Shimmeny: Evaluating the Security and Privacy Contributions
of Link Shimming in the Modern Web. In USENIX Security.

[27] F. Li and V. Paxson. 2017. A Large-Scale Empirical Study of Security Patches.
[28] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D.

Genkin, Y. Yarom, and M. Hamburg. 2018. Meltdown. ArXiv e-prints (Jan 2018).
arXiv:1801.01207

[29] A. Mathur and M. Chetty. 2017. Impact of User Characteristics on Attitudes
Towards Automatic Mobile Application Updates. In USENIX SOUPS.

[30] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras. 2015. The Attack of
the Clones: A Study of the Impact of Shared Code on Vulnerability Patching. In
IEEE Symp. on Security and Privacy.

[31] K. Nohl and J. Lell. 2018. Mind the Gap: Uncovering the Android Patch Gap
Through Binary-Only Patch Level Analysis. HITB Conference 2018.

[32] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, and T. Kara-
giannis. 2013. Rise of the Planet of the Apps: A Systematic Study of the Mobile
App Ecosystem. In ACM IMC.

[33] Scientific Policy Department for Economic and Quality of Life Policies
Directorate-General for Internal Policies. 2020. Sustainable Consumption and
Consumer Protection Legislation.

[34] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan, M. Allman,
C. Kreibich, and P. Gill. 2018. Apps, Trackers, Privacy, and Regulators: A Global
Study of the Mobile Tracking Ecosystem. In NDSS.

[35] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Haddadi.
2019. Information Exposure From Consumer IoT Devices: A Multidimensional,
Network-Informed Measurement Approach. In ACM IMC.

[36] J. Ren, M. Lindorfer, D. Dubois, A. Rao, D. Choffnes, and N. Vallina-Rodriguez.
2018. Bug Fixes, Improvements, ... and Privacy Leaks - A Longitudinal Study of
PII Leaks Across Android App Versions. In NDSS.

[37] P. Richter, G. Smaragdakis, D. Plonka, and A. Berger. 2016. Beyond Counting:
New Perspectives on the Active IPv4 Address Space. In ACM IMC.

[38] P. Richter, F. Wohlfart, N. Vallina-Rodriguez, M. Allman, R. Bush, A. Feldmann,
C. Kreibich, N. Weaver, and V. Paxson. 2016. A Multi-Perspective Analysis of
Carrier-Grade NAT Deployment. In ACM IMC.

[39] Samsung. 2020. What version of Android can I upgrade my Sam-
sung phone to? https://www.samsung.com/au/support/mobile-devices/
android-version-availability/.

[40] A. Sarabi, Z. Zhu, C. Xiao, M. Liu, and T. Dumitras. 2017. Patch Me If You Can: A
Study on the Effects of Individual User Behavior on the End-Host Vulnerability
State. In PAM.

[41] R. Sen, S. Ahmad, A. Phokeer, Z. A. Farooq, I. A. Qazi, D. Choffnes, and K. P.
Gummadi. 2018. Inside the Walled Garden: Deconstructing Facebook’s Free
Basics Program. ACM CCR 47, 5 (2018).

[42] International Telecommunication Union. 2020. ICT Data and Statistics. https:
//www.itu.int/ITU-D/ict/statistics/ict/.

[43] International Telecommunication Union. 2020. Individuals Using the Internet
Statistics. https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx.

[44] K. Vaniea and Y. Rashidi. 2016. Tales of Software Updates: The Process of Updating
Software. In ACM CHI.

[45] S. Vargas, U. Goel, M. Steiner, and A. Balasubramanian. 2019. Characterizing
JSON Traffic Patterns on a CDN. In ACM IMC.

[46] W3C. 2020. Definition of User Agent. https://www.w3.org/WAI/UA/work/wiki/
Definition_of_User_Agent.

[47] N. Xia, H. H. Song, Y. Liao, M. Iliofotou, A. Nucci, Z-L. Zhang, and A. Kuz-
manovic. 2013. Mosaic: quantifying privacy leakage in mobile networks. In ACM
SIGCOMM.

[48] L. Zhang, D. Choffnes, D. Levin, T. Dumitraş, A. Mislove, A. Schulman, and C.
Wilson. 2014. Analysis of SSL Certificate Reissues and Revocations in the Wake
of Heartbleed. In ACM IMC.

[49] Y. Zhang, H. Mekky, Z-L Zhang, R. Torres, S-J Lee, A. Tongaonkar, and M. Mellia.
2015. Detecting Malicious Activities with User-Agent Based Profiles. Int. J.
Network Management (2015).

https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://developers.whatismybrowser.com/useragents/explore/hardware_type_specific/phone/
https://developers.whatismybrowser.com/useragents/explore/hardware_type_specific/phone/
https://www.amazon.com/gp/mas/get/amazonapp
https://www.amazon.com/gp/mas/get/amazonapp
https://www.apple.com/ios/app-store/
https://support.apple.com/en-us/HT201222
https://www.abacusnews.com/culture/windows-7-gone-chinas-dedicated-users-arent-ready-let-go/article/3046210
https://www.abacusnews.com/culture/windows-7-gone-chinas-dedicated-users-arent-ready-let-go/article/3046210
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.ftc.gov/news-events/press-releases/2016/05/ftc-study-mobile-device-industrys-security-update-practices
https://www.ftc.gov/news-events/press-releases/2016/05/ftc-study-mobile-device-industrys-security-update-practices
https://www.ericsson.com/en/mobility-report/reports/june-2020/mobile-data-traffic-outlook
https://www.ericsson.com/en/mobility-report/reports/june-2020/mobile-data-traffic-outlook
https://connectivity.fb.com/free-basics/
http://tools.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/rfc/rfc2616.txt
https://techcrunch.com/2020/03/11/european-lawmakers-propose-a-right-to-repair-for-mobiles-and-laptops/
https://techcrunch.com/2020/03/11/european-lawmakers-propose-a-right-to-repair-for-mobiles-and-laptops/
https://play.google.com/store
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01207
https://www.samsung.com/au/support/mobile-devices/android-version-availability/
https://www.samsung.com/au/support/mobile-devices/android-version-availability/
https://www.itu.int/ITU-D/ict/statistics/ict/
https://www.itu.int/ITU-D/ict/statistics/ict/
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.w3.org/WAI/UA/work/wiki/Definition_of_User_Agent
https://www.w3.org/WAI/UA/work/wiki/Definition_of_User_Agent

	Abstract
	1 Introduction
	2 Background
	3 Dataset
	4 Mining User-Agent Strings
	4.1 Methodology Overview
	4.2 Partitioning the Space: Clustering
	4.3 Classification and Information Extraction Pipeline
	4.4 Classification Efficacy
	4.5 Classification Results and Filtering

	5 A Software Ecosystem in Flux
	5.1 Inferring Software Release Dates
	5.2 Metrics to Capture Version Adoption
	5.3 Tracking Version Lifecycles
	5.4 The Platform Effect

	6 Who's left behind?
	6.1 Capturing Behindness
	6.2 Understanding Root Causes of Behindness
	6.3 Geographic View

	7 Discussion
	References

