Internet Measurement

MIT 6.829 Computer Networks Fall 2018

Philipp Richter

richterp@csail.mit.edu

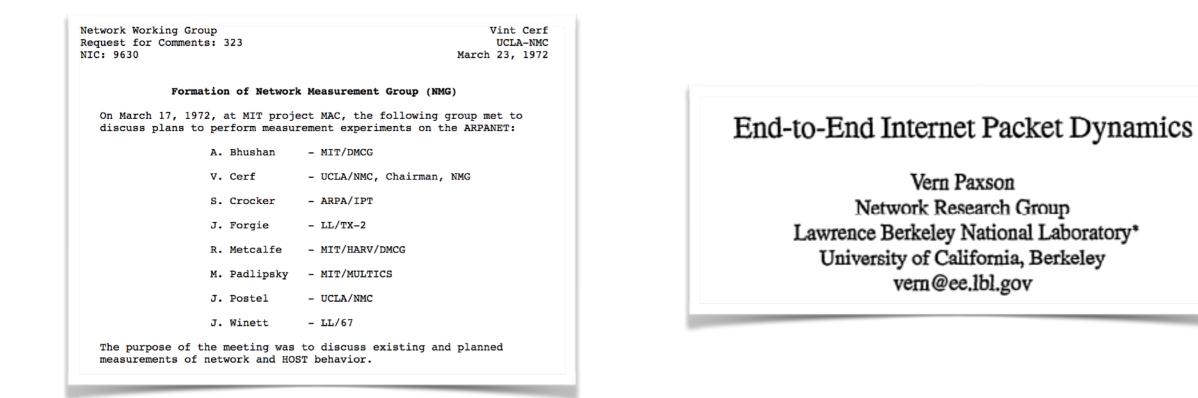
suggested reading:

M. Roughan et al. 10 Lessons from 10 Years of Measuring and Modeling the Internet's Autonomous Systems IEEE JSAC 29(9), 2011.

N. Spring et al. Measuring ISP Topologies with Rocketfuel IEEE/ACM Transactions on Networking 12(1), 2004.

Z. Durumeric et al. ZMap: Fast Internet-wide Scanning and Its Security Applications USENIX Security, 2013.

Internet Measurement

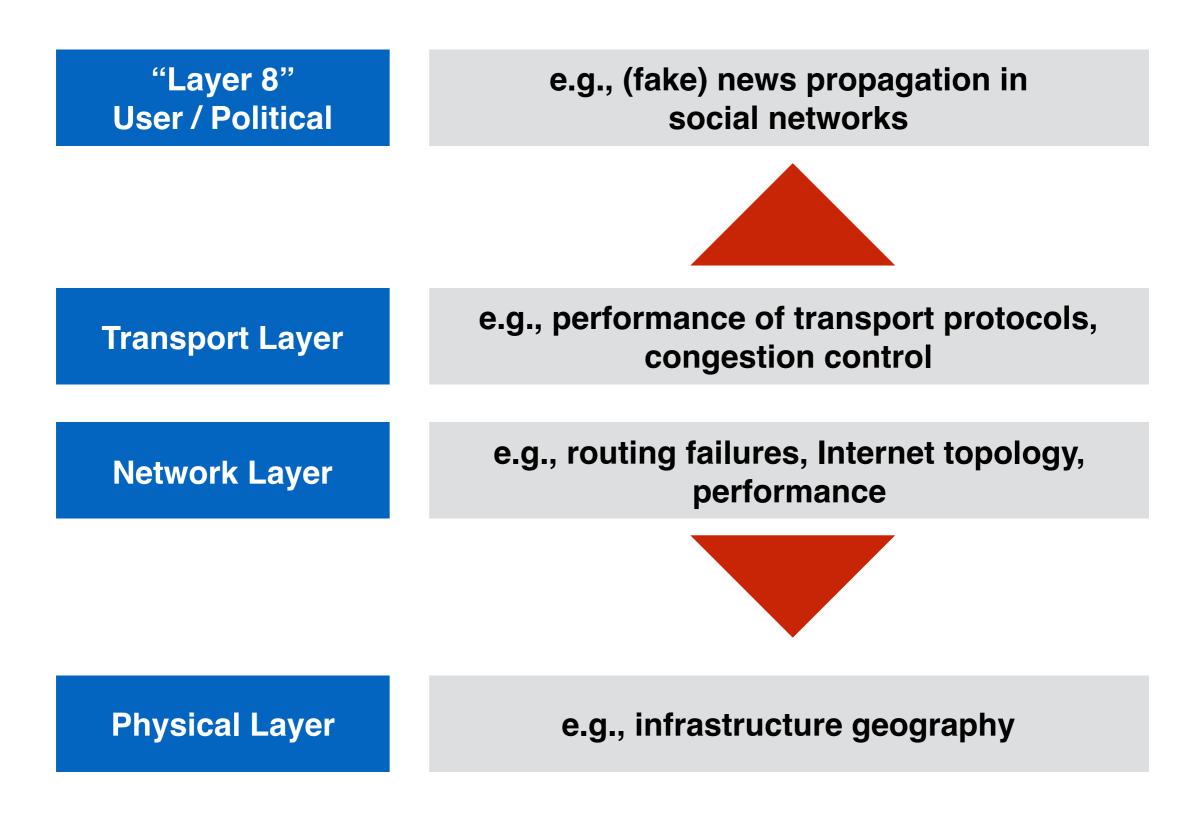

"Reverse-Engineering the Internet"

"developing and applying techniques to empirically study properties (of interest) of the Internet"

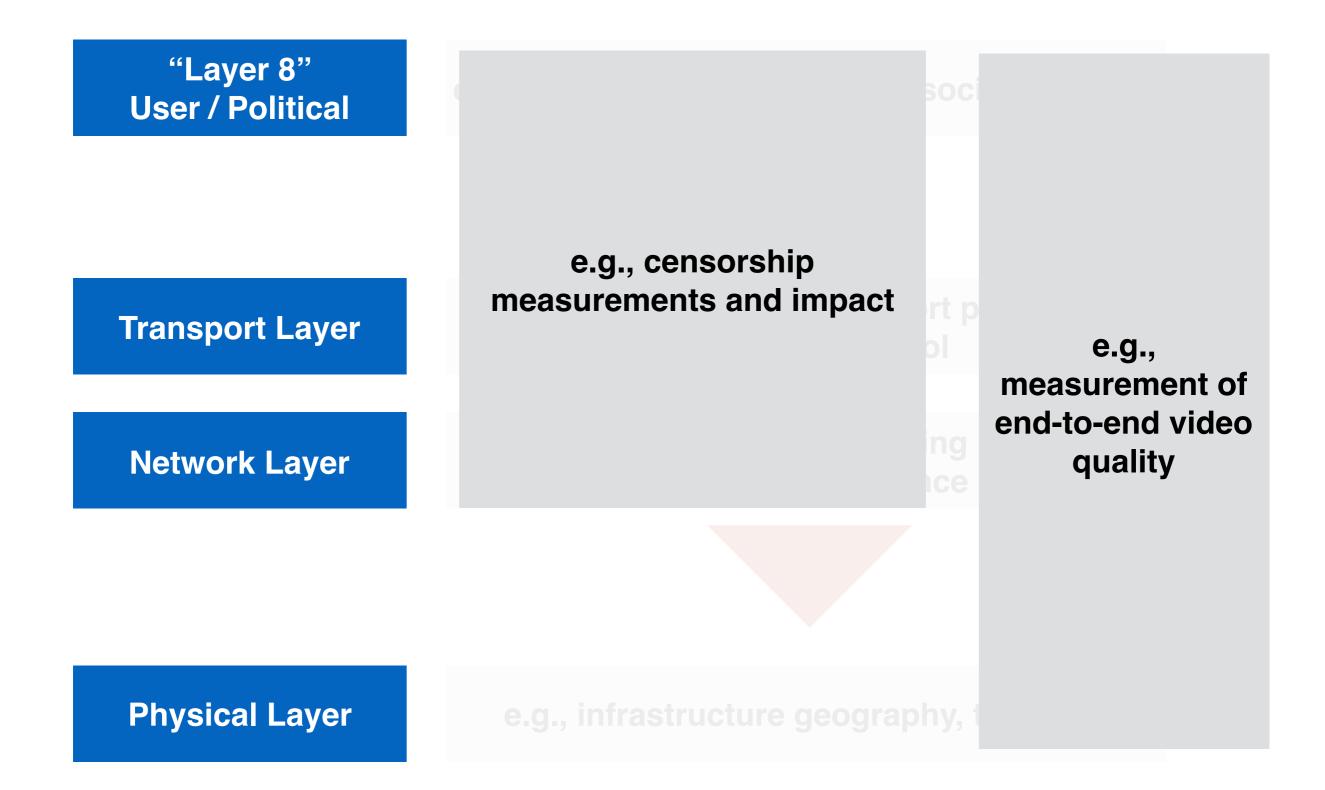
Motivation

- Network Debugging
- Performance
- Resilience
- Security
- Regulation and Policies
- Broader impact on society: state censorship, price and traffic discrimination, impact of social media, ...

Internet Measurements - The Origins

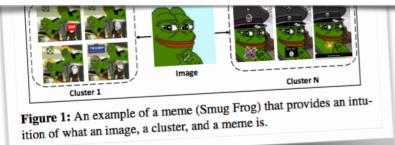

RFC323: IETF formed measurement group(s) as early as 1972 first major academic measurement studies (e.g., Paxson, SIGCOMM 1997)

2001: First ACM SIGCOMM Internet Measurement Workshop 2003: First ACM IMC (Internet Measurement Conference)


Internet Measurements - "Classic" (yet highly relevant)

Transport Layer	e.g., performance of transport protocols, congestion control
Network Layer	e.g., routing failures, Internet topology, performance

Internet Measurements - A Broadening Field


Internet Measurements - Cross-layer Measurements

Internet Measurement - A Creative Field

On the Origins of Memes by Means of Fringe Web Communities

Savvas Zannettou^{*}, Tristan Caulfield[‡], Jeremy Blackburn[†], Emiliano De Cristofaro[‡], Michael Sirivianos^{*}, Gianluca Stringhini[‡], and Guillermo Suarez-Tangil^{‡+}

Email Typosquatting

Janos Szurdi Carnegie Mellon University jszurdi@andrew.cmu.edu Nicolas Christin Carnegie Mellon University nicolasc@andrew.cmu.edu

*.exampel.com.	300	MX	1	exampel.com.
exampel.com.	300	MX	1	exampel.com.
*.exampel.com.	300	Α	NA	1.1.1.1
exampel.com.	300	А	NA	1.1.1.1

If you are not paying for it, you are the product: How much do advertisers pay to reach you?

Panagiotis Papadopoulos FORTH-ICS, Greece panpap@ics.forth.gr

Pablo Rodriguez Rodriguez Telefonica Alpha, Spain pablo.rodriguezrodriguez@telefonica.com Nicolas Kourtellis Telefonica Research, Spain nicolas.kourtellis@telefonica.com

Nikolaos Laoutaris Data Transparency Lab, Spain nikos@datatransparencylab.org

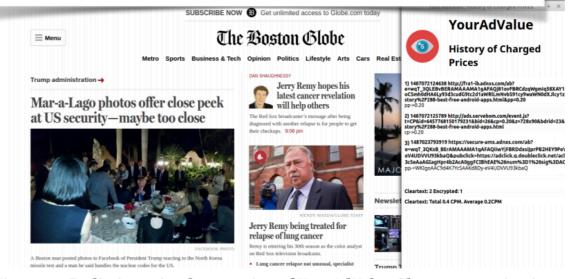
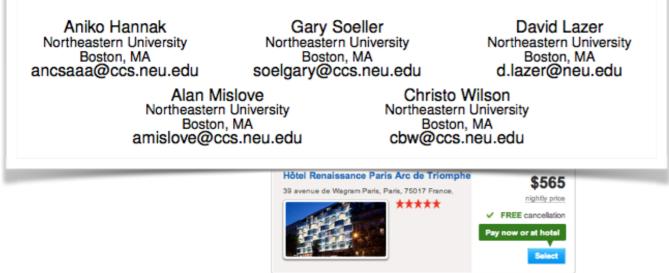
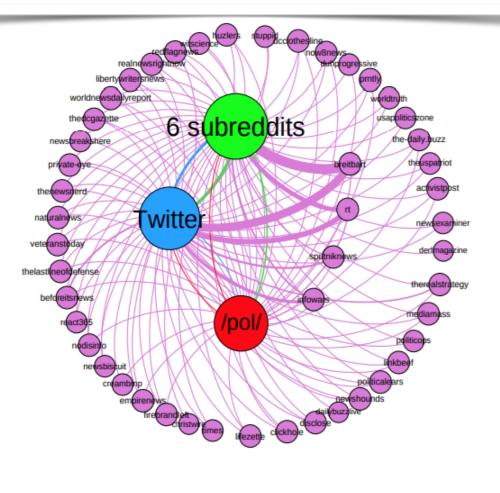
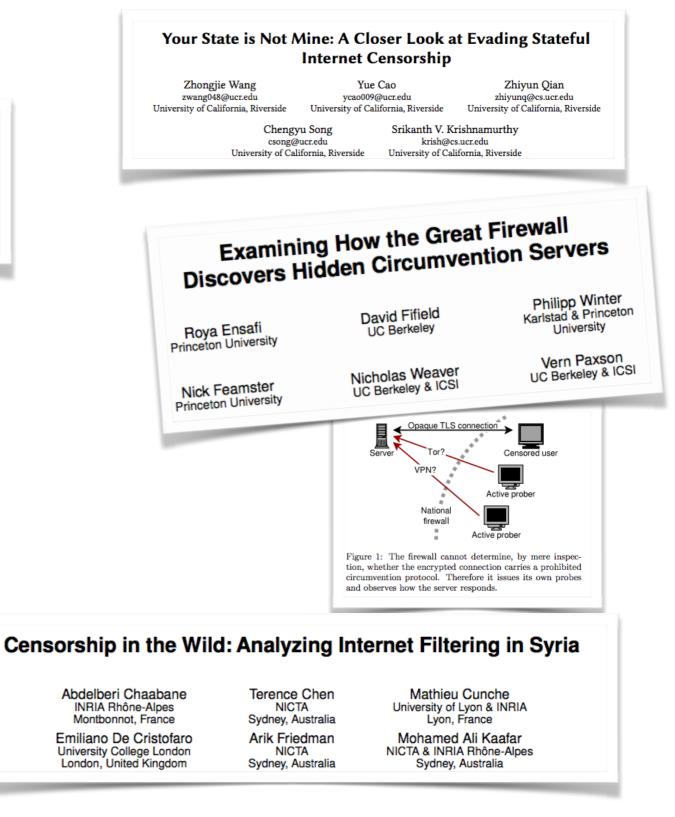
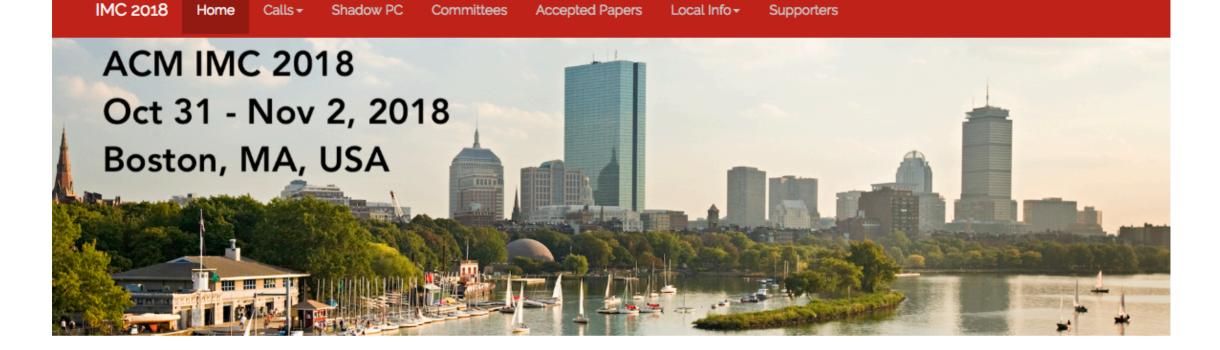


Figure 20: Preliminary implementation of YourAdValue Chrome extension in use.

Measuring Price Discrimination and Steering on E-commerce Web Sites


Figure 4: Example of price discrimination. The top result was served to the AMT user, while the bottom result was served to the comparison and control.


Internet Measurement - Broader Societal Impact

The Web Centipede: Understanding How Web Communities Influence Each Other Through the Lens of Mainstream and Alternative News Sources

Savvas Zannettou^{*}, Tristan Caulfield[†], Emiliano De Cristofaro[†], Nicolas Kourtellis[‡], Ilias Leontiadis[‡], Michael Sirivianos^{*}, Gianluca Stringhini[†], and Jeremy Blackburn⁺

ACM Internet Measurement Conference 2018

The 2018 Internet Measurement Conference (IMC) is a three-day event focusing on Internet measurement and analysis. The conference is sponsored by ACM SIGCOMM. IMC 2018 is the 18th in a series of highly successful Internet Measurement Workshops and Conferences.

The ACM IMC 2018 conference will be held in Boston, MA, USA on October 31 - November 2, 2018.

come join us there!

Internet Measurement - Fundamental Challenges (i)

Internet: Not designed with measurability in mind

"current measurement practice often involves the exploitation of sideeffects and unintended features of the network, or, in other words, the **artful piling of hacks atop one another.** This state of affairs is a direct result of the relative paucity of diagnostic and measurement capabilities built into today's network stack."

M. Allman et al. "Principles for Measurability in Protocol Design" ACM CCR, 2017.

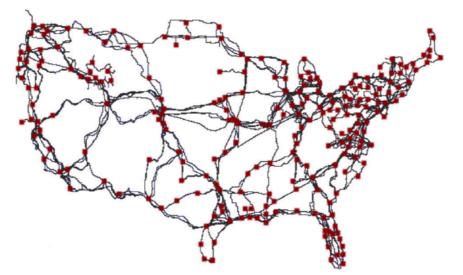
Internet Measurement - Fundamental Challenges (ii)

- Lack of ground truth
- Lack of available data
- Heterogeneity of the network
 -> Generalizability of results
- Privacy concerns, Ethics

Internet Topology Measurement Topology (Oxford Dictionary):

"the way in which constituent parts are interrelated or arranged"

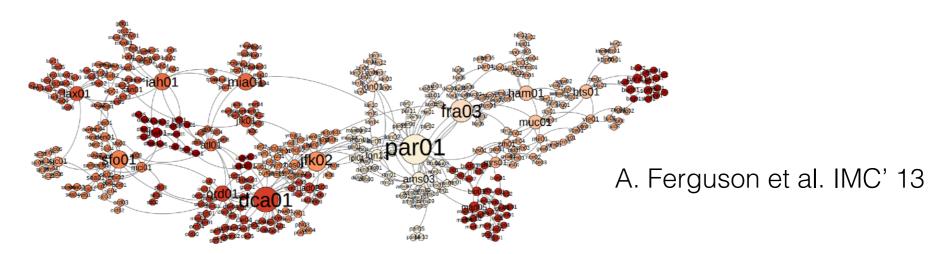
model of the Internet:


series of tubes? set of routers? nodes and vertices in a graph?

why does it matter?

fundamental for systems design whatever testbed we have, is it realistic?

Trends in Interconnectivity


Internet resilience

R. Durairajan et al. SIGCOMM '15

Physical

Figure 1: Location of physical conduits for networks considered in the continental United States.

Logical topology Router Level

Figure 6: Visualization of paths in Cogent's network based on data from the week of April 7, 2013; nodes represent routers, edges link routers sharing the same IP subnet, and nodes are scaled to represent *betweenness* – larger nodes have a greater number of paths passing through them. The layout is force-directed, with no geographical information.

bgp.he.net

Logical topology Autonomous Systems Level

AS-level Topology

Within the Internet, an autonomous system (AS) is a collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network operators on behalf of a single administrative entity or domain that presents a common, clearly defined routing policy to the Internet.

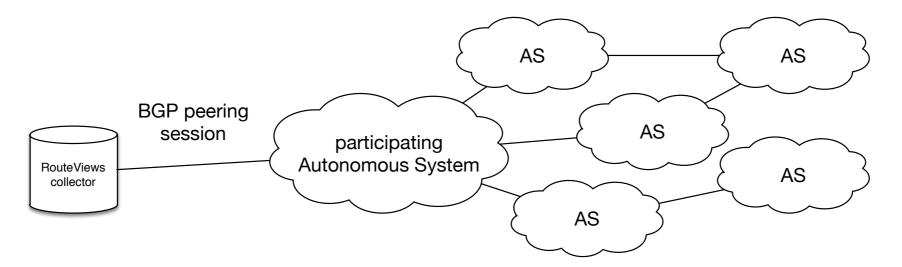
(Wikipedia)

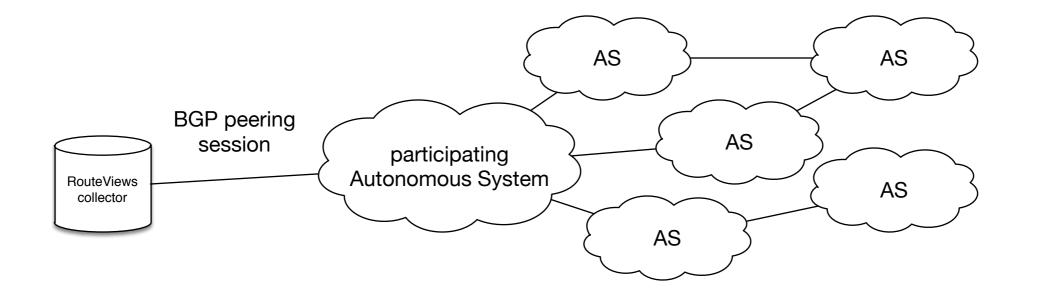
abstracts entire networks to be single nodes makes things (seemingly) easy!

goal:

"find the ASes in the Internet and their BGP links"

(many follow-up questions possible)

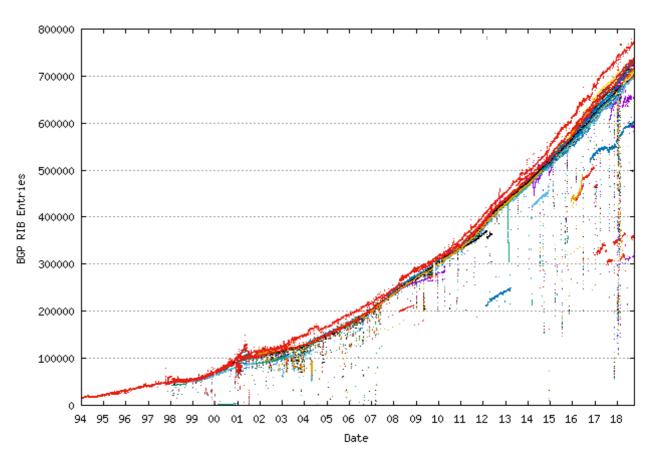

Passive AS-level topology measurements: Tapping into the global routing system Publicly available data



- 100+ route collectors, 1000+ peers ("participating" ASes)
- Collectors establish BGP session and collect messages
- But: they do not "peer" i.e., they do not exchange traffic

* some ASes "participate" (provide direct feeds) unknowingly, if the route collector has BGP session(s) with IXP route servers. Further reading on IXP route servers: Richter et al., ACM IMC 2014

Passive AS-level topology measurements: Tapping into the global routing system Publicly available data

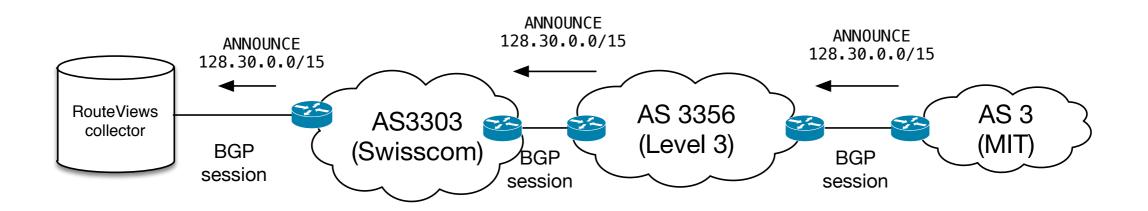

Route collector saves all BGP messages received from peers

- * Route Announcements
- * Route Withdrawals

Statistics from a RouteView collector as of September 2018

September '18: ~750K IPv4 prefixes originated from ~62K Autonomous Systems

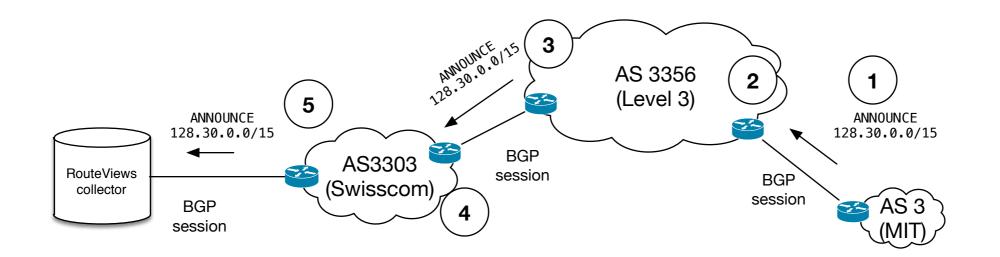
"the global routing table"


daily updated statistics: <u>http://bgp.potaroo.net/</u> live queries: <u>https://stat.ripe.net/widget/routing-status</u>

prefix AS path

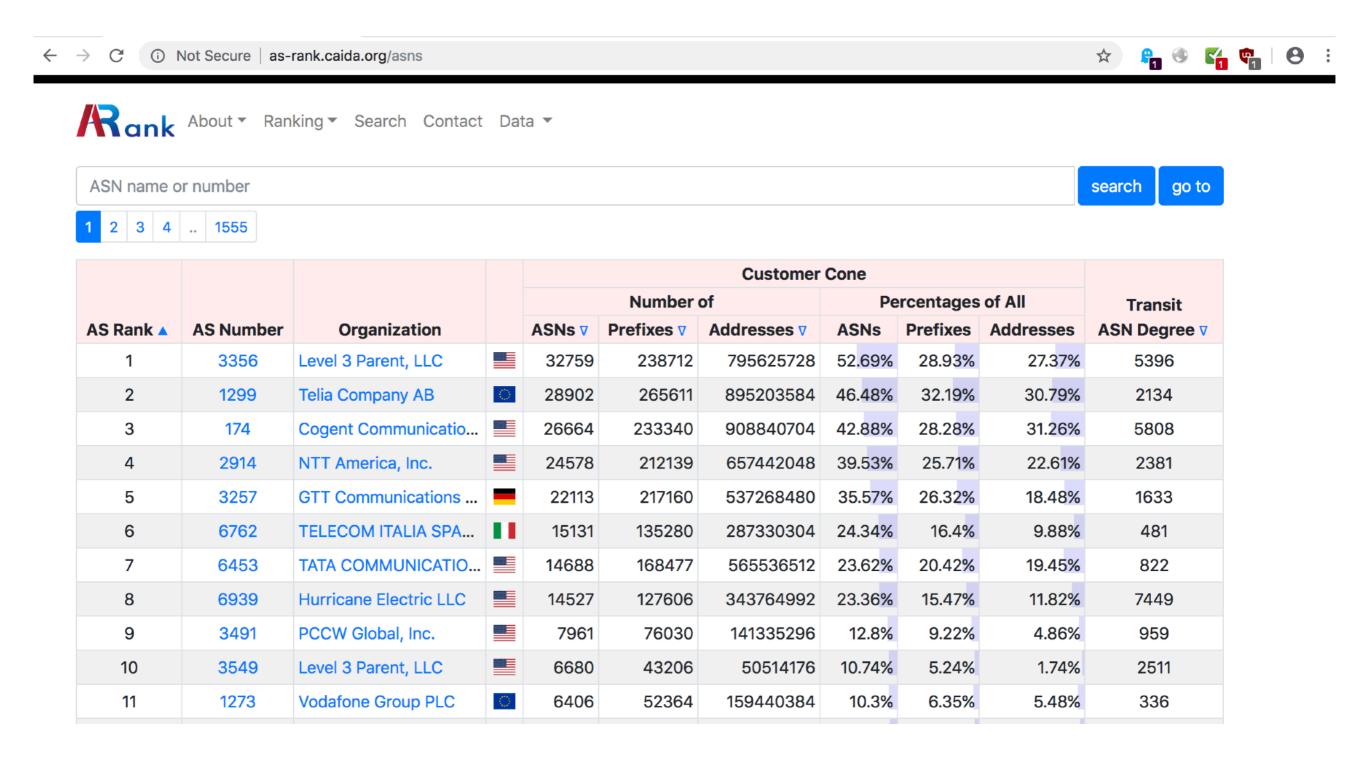
TABLE_DUMP2|1536508822|B|217.192.89.50|3303|128.30.0.0/15|3303 3356 3|IGP| [...]

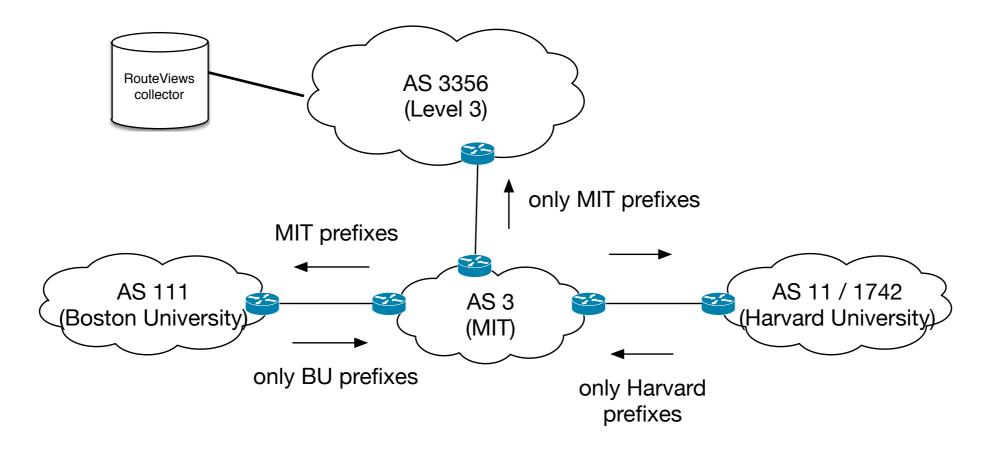
prefix AS path


TABLE_DUMP2|1536508822|B|217.192.89.50|3303|128.30.0.0/15|3303 3356 3|IGP| [...]

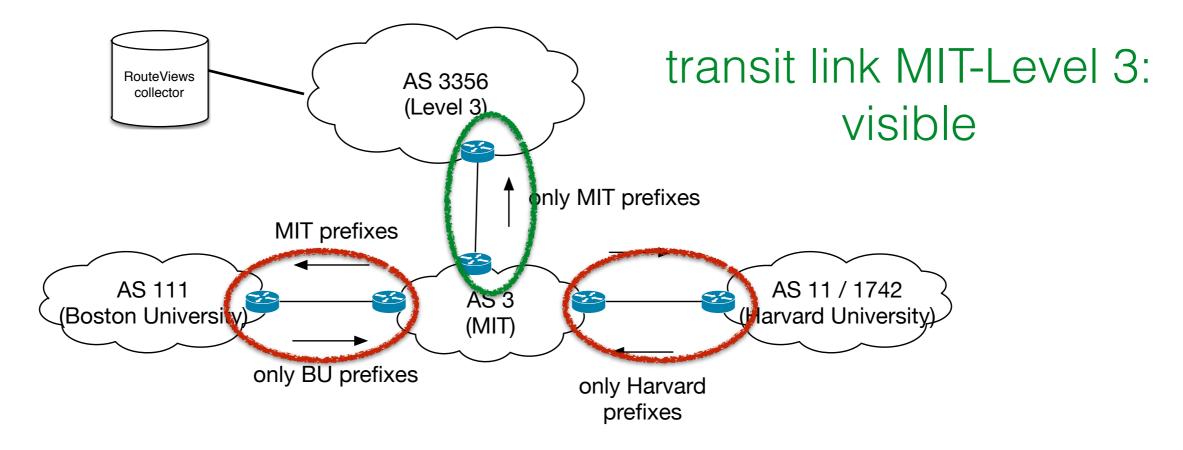
From this line, we derive:

-> AS3 is the origin of 128.30.0.0/15


-> BGP peerings between: AS3303 <> AS3356 and AS3356 <> AS3


- 1. MIT announces its prefix to its **upstream**, *Level 3*
- 2. Level 3 decides to accept the announcement cause MIT is a customer.
- 3. Level 3 decides to propagate MIT prefix to its customers and peers
- 4. Swisscom receives Level 3 announcement and chooses it as best path
- 5. Swisscom propages to route collector.

The AS path we see is the result of **policy routing**.


AS-Topology use case: Rank ISPs by Customer Cone

further reading: Luckie et al. "AS Relationships, Customer Cones, and Validation" ACM IMC 2013.

* this topology is made up, MIT and BU/Harvard to not peer directly, but via AS10578

* this topology is made up, MIT and BU/Harvard to not peer directly, but via AS10578

peering links BU-MIT and MIT-Harvard invisible

AS relationships derived from BGP data are (heavily?) biased towards Customer-Provider links.

Year/Methodology	Est. # of customer- provider links in the Internet	Est. number of peering links in the Internet
2008 (BGP)*	~60,000	~15,000

* Dhamdhere et al., , ACM IMC 2008, IEEE/ACM Trans on Networking 2011
 ** Augustin et al., ACM IMC 2009
 ** K. Chen et al., ACM CoNEXT 2009
 *** Ager et al., SIGCOMM 2012

slide adapted from W. Willinger, "There is more to Internet measurement than meets the eye" @ KTH Stockholm

Year/Methodology	Est. # of customer- provider links in the Internet	Est. number of peering links in the Internet
2008 (BGP)*	~60,000	~15,000
2010 (BGP + traceroute)**	~90,000	~30,000

* Dhamdhere et al., , ACM IMC 2008, IEEE/ACM Trans on Networking 2011
 ** Augustin et al., ACM IMC 2009
 ** K. Chen et al., ACM CoNEXT 2009
 *** Ager et al., SIGCOMM 2012

slide adapted from W. Willinger, "There is more to Internet measurement than meets the eye" @ KTH Stockholm

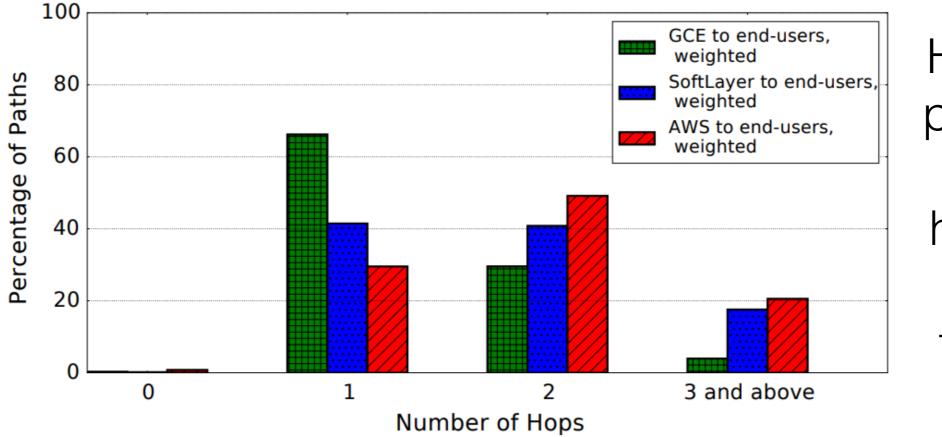
Year/Methodology	Est. # of customer- provider links in the Internet	Est. number of peering links in the Internet
2008 (BGP)*	~60,000	~15,000
2010 (BGP + traceroute)**	~90,000	~30,000
2012 (ground truth from a large IXP)***	~90,000	>200,000

Dhamdhere et al., , ACM IMC 2008, IEEE/ACM Trans on Networking 2011 ** Augustin et al., ACM IMC 2009 ** K. Chen et al., ACM CoNEXT 2009 *

*** Ager et al., SIGCOMM 2012

slide adapted from W. Willinger, "There is more to Internet measurement than meets the eye" @ KTH Stockholm

Year/Methodology	Est. # of customer- provider links in the Internet	Est. number of peering links in the Internet
2008 (BGP)*	~60,000	~15,000
2010 (BGP + traceroute)**	~90,000	~30,000
2012 (ground truth from a large IXP)***	~90,000	>200,000


Topology much "flatter" than visible in BGP.

Peering Links vs. Transit Links: Traffic?

majority of peering links, but majority of traffic still on transit?

Peering Links vs. Transit Links: Traffic?

majority of peering links, but majority of traffic still on transit?

Hypergiants peer directly with ASes home to the majority of their users.

Figure 4: Paths lengths from different cloud platforms to end-users.

Chiu et al., "Are We One Hop Away from a Better Internet?" ACM IMC 2015.

AS-level topology measurements: Recap

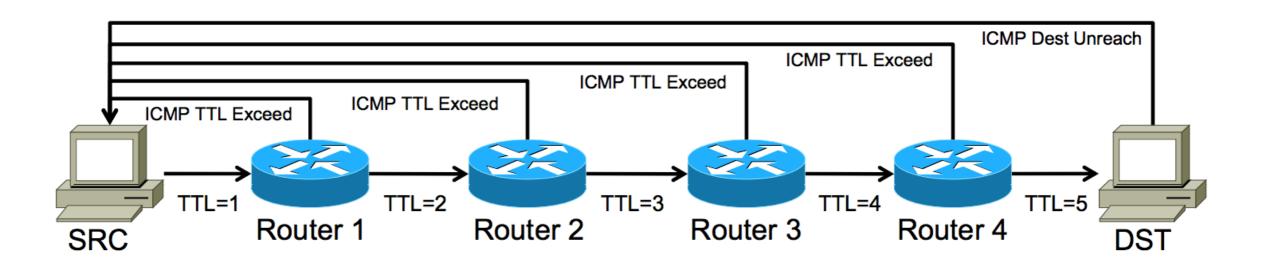
- BGP data from RouteViews extremely useful
 - Studying Customer-Provider structure & economics
 - Studying BGP routing and routing anomalies
- But was never meant to be used for topology inference
- Hides most of peering links -> hides local connectivity
- Can easily lead to wrong conclusions
- "Know your data"

Is the data "fit" to answer your specific question?

Topology measurements: Active

Traceroute, introduced 1988 by Van Jacobson

Tue Dec 27 06:24:24 PST 1988


Traceroute is a system administrators utility to trace the route ip packets from the current system take in getting to some destination system. See the comments at the front of the program for a description of its use.

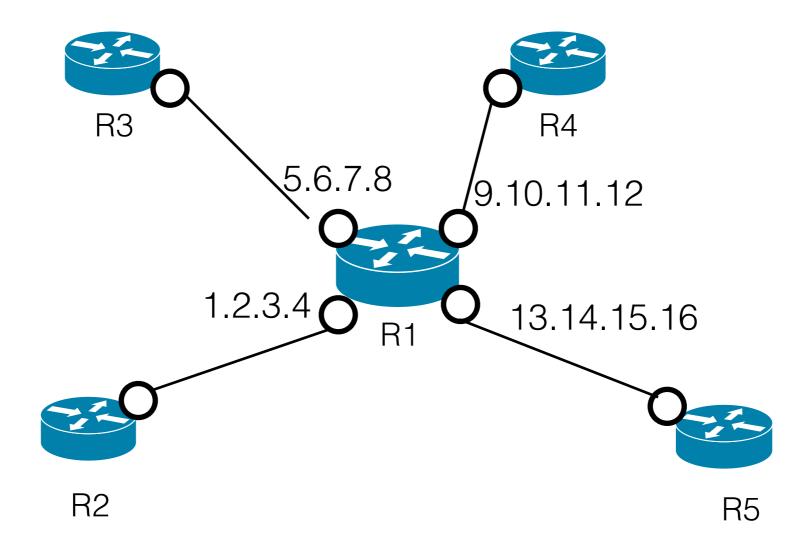
(from traceroute.c, 1988)

```
* A more interesting example is:
*
      [yak 72]% traceroute allspice.lcs.mit.edu.
*
     traceroute to allspice.lcs.mit.edu (18.26.0.115), 30 hops max
*
         helios.ee.lbl.gov (128.3.112.1) 0 ms 0 ms 0 ms
*
       1
         lilac-dmc.Berkeley.EDU (128.32.216.1) 19 ms 19 ms
*
      2
                                                              19 ms
         lilac-dmc.Berkeley.EDU (128.32.216.1) 39 ms 19 ms
      3
                                                              19 ms
*
         ccngw-ner-cc.Berkeley.EDU (128.32.136.23) 19 ms 39 ms 39 ms
*
       4
         ccn-nerif22.Berkeley.EDU (128.32.168.22) 20 ms 39 ms 39 ms
*
      5
         128.32.197.4 (128.32.197.4) 59 ms 119 ms 39 ms
*
      6
         131.119.2.5 (131.119.2.5) 59 ms 59 ms
                                                 39 ms
*
      7
         129.140.70.13 (129.140.70.13) 80 ms 79 ms 99 ms
*
      8
         129.140.71.6 (129.140.71.6) 139 ms 139 ms 159 ms
      9
*
      10 129.140.81.7 (129.140.81.7) 199 ms 180 ms 300 ms
*
         129.140.72.17 (129.140.72.17) 300 ms 239 ms 239 ms
     11
*
         * * *
     12
*
         128.121.54.72 (128.121.54.72) 259 ms 499 ms 279 ms
     13
*
     14
         * * *
*
     15
         * * *
*
     16 * * *
*
     17
         * * *
*
      18
         ALLSPICE.LCS.MIT.EDU (18.26.0.115) 339 ms 279 ms 279 ms
*
*
* (I start to see why I'm having so much trouble with mail to
* MIT.)
```

Traceroute

- 1. Launch a probe packet towards DST, with a TTL of 1
- 2. Every router hop decrements the IP TTL of the packet by 1
- 3. When the TTL hits 0, packet is dropped, router sends *ICMP TTL Exceeded* packet to SRC
- 4. SRC receives this ICMP message, displays as trace route "hop"
- 5. Repeat from step 1, with TTL incremented by 1 each time, until..
- 6. DST hop receives probe, returns ICMP Dest Unreachable
- 7. SRC stops the trace route upon receipt of ICMP Dest Unreachable

slide adapted from Richard Steenbergen, "A Practical Guide to (Correctly) Troubleshooting with Traceroute", NANOG 47


Traceroute Anomalies

- Missing Hops
- Missing Destination
- Load Balancing
- No visibility into return path (asymmetric routing)
- Shows IP addresses = router aliases != routers

further reading on traceroute anomalies (not covered here):

Augustin et al., "Avoiding traceroute anomalies with Paris traceroute" ACM IMC 2006 Mao et al., "Towards an accurate AS-level traceroute tool" ACM SIGCOMM 2003 Luckie et al., "bdrmap: Inference of Borders Between IP Networks", ACM IMC 2016 Katz-Bassett et al., "Reverse Traceroute", NSDI 2010

IP Address != Interface != Router

traceroute via R2,R1,R4: R1 likely to show up with 1.2.3.4 traceroute via R5,R1,R4: R1 likely to show up with 13.14.15.16

routers typically (not always!) reply with the IP address of the **inbound** interface. (this violates RFC1812, but is common behavior).

Amini et al., "Issues with Inferring Internet Topological Attributes" Mao et al., "Towards an Accurate AS-Level Traceroute Tool"

Router Alias Resolution Example: Direct Probing

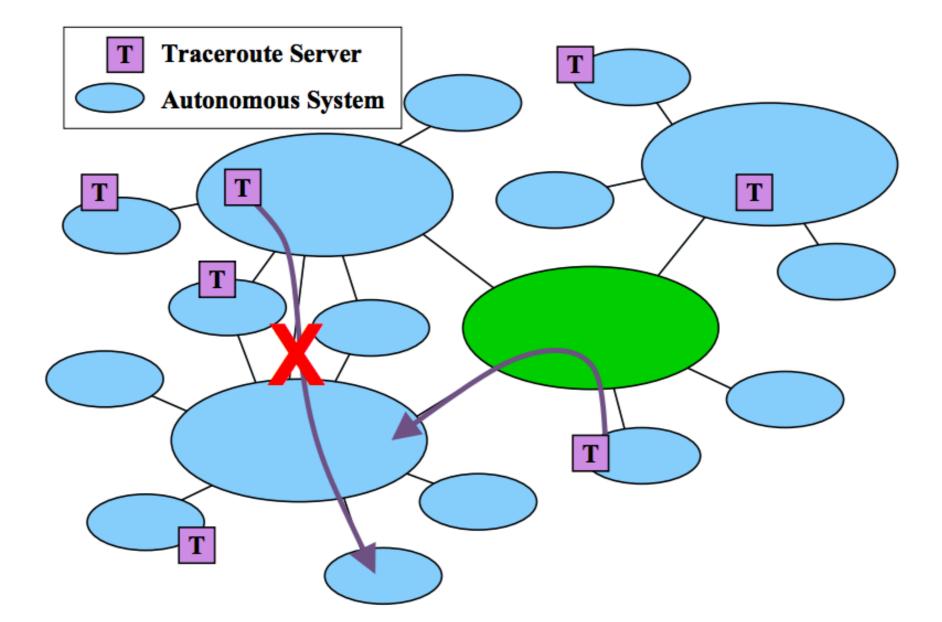
```
Berkeley to MIT:
1 router1-vlan1.ICSI.Berkeley.EDU (192.150.186.1)
2 router12-ge0-0-0.ICSI.Berkeley.EDU (192.150.187.254)
3 ge-0-2-0.inr-667-sut.Berkeley.EDU (169.229.0.140)
...
MIT to Berkeley:
...
24 sut-mdc-ar1--xe-0-1-0.net.berkeley.edu (128.32.0.17)
25 router12-ge0-0-1.icsi.berkeley.edu (169.229.0.141)
26 router1-vlan5.icsi.berkeley.edu (192.150.187.249)
...
```

same router? send UDP probe to random high port:

 Wi-Fi: en0 Wi-Fi: en0 We send packets to each alia (different IP addresses) 										
No.	Time	Source	Destination	tocol Length	Info					
69	1537742992.833704	192.168.0.102	192.150.187.249 UD	P 47	64242→55022	Len=5				
71	1537742992.973948	192.150.187.249	192.168.0.102	MP 70	Destination	unreachable (Po	ort unreachable)			
103	1537743000.790409	192.168.0.102	192.150.186.1 UD	P 47	62171→55022	Len=5				
104	1537743000.884043	192.150.187.249	192.168.0.102 IC	MP 70	Destination	unreachable (Po	ort unreachable)			

router replies with one single IP address

Alias Resolution Example: Increasing IPID Field


IP header has the IPID field. Original purpose: re-assemble fragmented IP packets.

Often implemented as counter:

•						Wi-Fi: en0				
		<u>a</u> 💿 🖿 🛅	🔀 🙆 🔍	🔶 🏓 🖉 🖣	<u>↓</u>	. ⊕ ⊖				
	ticmp or (udp and udp.port == 55022) Expression +									
No.		Time	Source	Destination	Protocol	Length Info		IPID		
Г	28	1537998445.314635	192.168.0.100	192.150.186.1	UDP	49 50874→55022 L	_en=7	0x=0ca (57546)		
L	29	1537998445.405180	192.150.187.249	192.168.0.100	ICMP	70 Destination u	<pre>inreachable (Port unreachable)</pre>	x7962 (31074) xe0ca (575		
	39	1537998449.187481	192.168.0.100	192.150.187.249	UDP	49 56132→55022 L	en=7	0x574b (22347)		
	40	1537998449.285354	192.150.187.249	192.168.0.100	ICMP	70 Destination u	nreachable (Port unreachable)	0x7967 (31079),0x574b (223…		
	42	1537998450.148436	192.168.0.100	192.150.186.1	UDP	49 52910→55022 L	en=7	0xeaf9 (60153)		
	43	1537998450.243982	192.150.187.249	192.168.0.100	ICMP	70 Destination u	ınreachable (Port unreachable)	0x7968 (31080),0x af9 (601…		
	44	1537998450.887651	192.168.0.100	192.150.187.249	UDP	49 53618→55022 L	en=7	0xbbaa (48042)		
	45	1537998450.987256	192.150.187.249	192.168.0.100	ICMP	70 Destination u	ınreachable (Port unreachable)	0x796b (31083),0x baa (480…		
	46	1537998451.564593	192.168.0.100	192.150.186.1	UDP	49 61181→55022 L	en=7	0xf1d9 (61913)		
	47	1537998451.657689	192.150.187.249	192.168.0.100	ICMP	70 Destination u	nreachable (Port unreachable)	0x796c (31084),0 f1d9 (619		
	50	1537998452.210720	192.168.0.100	192.150.187.249	UDP	49 60834→55022 L	en=7	🖗 xca1a (51738)		
	51	1537998452.315721	192.150.187.249	192.168.0.100	ICMP	70 Destination u	<pre>inreachable (Port unreachable)</pre>	0x796e (31086)/0xca1a (517…		

IPID field of ICMP replies of the router form a sequence

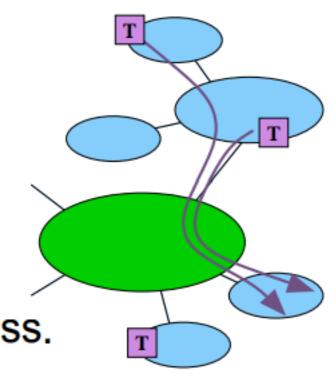
Traceroute for ISP Topology Inference

Traceroutes show single paths. How to effectively select target IP addresses?

Spring et al. "Measuring ISP Network Topologies with Rocketfuel", SIGCOMM 2002 slides

Path Reductions

Want to choose unique paths – with new information.


Skip repeated traces of the same path.

Expect the common case:

- Traceroute server has one ingress point
- Customer prefix has one egress point
- BGP peers have one early-exit per ingress.

If we're wrong, we might miss some paths.

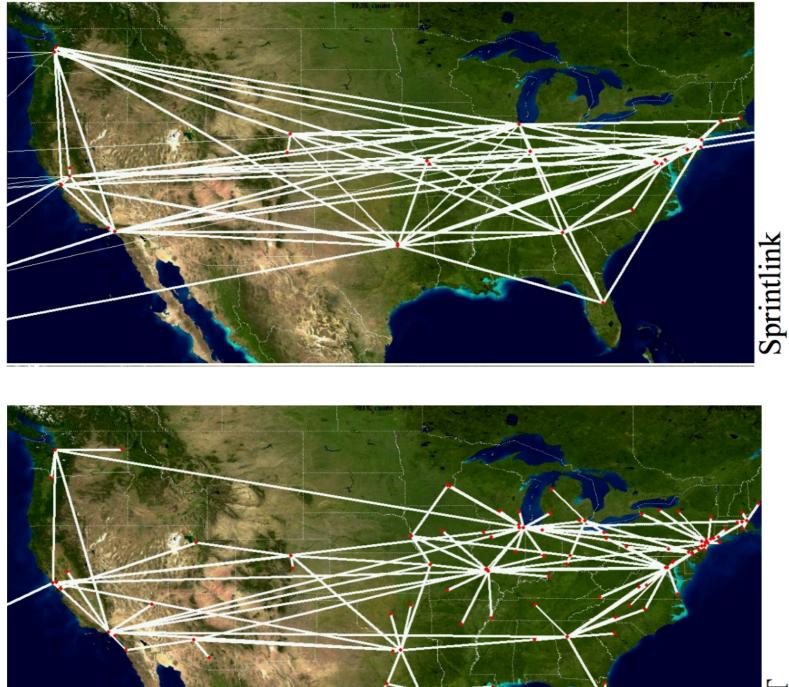
New servers add paths or share load!

Reduction Effectiveness

• Brute force:

All servers to all BGP prefixes, disaggregate ISP prefixes. 90-150 million traceroutes required

- BGP directed probes: All traceroutes identifiable from RouteViews.
 0.2-15 million traceroutes required
- Executed after path reduction: Traceroutes chosen by Rocketfuel.
 8-300 thousand traceroutes required


Directed probing and path reductions are effective at reducing the number of probes required to map an ISP

Traceroute for Large-Scale Topology Inference

- Need sufficient number of vantage points
- Need a smart way to select target IPs
 - Brute-Force probing the whole space ineffective
- Need to deal with traceroute issues

Rocketfuel combines all these aspects together, leveraging BGP data to select target ranges, into a single system.

ISP Topologies inferred by Rocketfuel (back in 2002...)

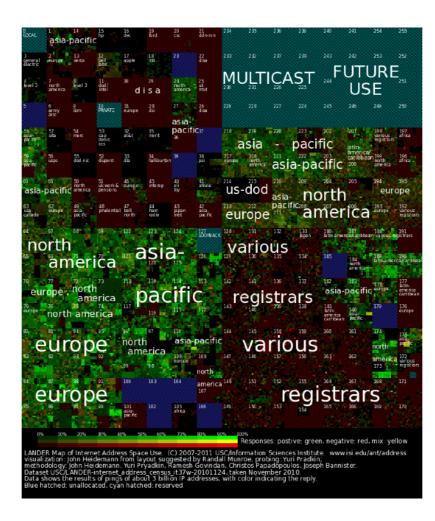
AT&T

Internet-Wide Scanning

Scanning the entire IPv4 address space

entire IPv4 Space: 2 ** 32 addresses = 4.3B addresses

routable IPv4 space (excluding reserved ranges, multicast etc): ~3.7B addresses


publicly routed IPv4 space: ~2.9B addresses (as of late 2017)

can we just scan (probe) every single routed IPv4 address?

further reading: Richter et al. "A Primer on IPv4 Scarcity" ACM CCR 2015

Scanning the entire IPv4 address space

• First full scans of the IPv4 space took weeks to months

Heidemann et al., "Census and Survey of the Visible Internet" ACM IMC 2008

ZMap - Stateless Implementation

Default case: We open a TCP socket, send a SYN packet wait for the destination to reply (or not to reply)

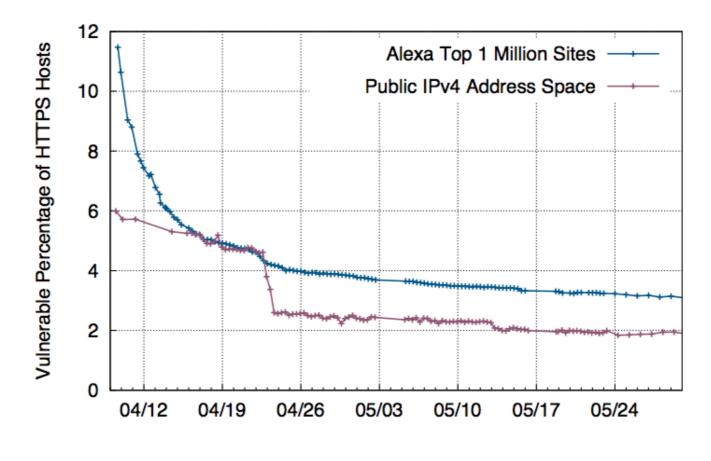
ZMap: Bypass the TCP/IP stack of the OS craft Ethernet frames directly, "fill up the pipe"

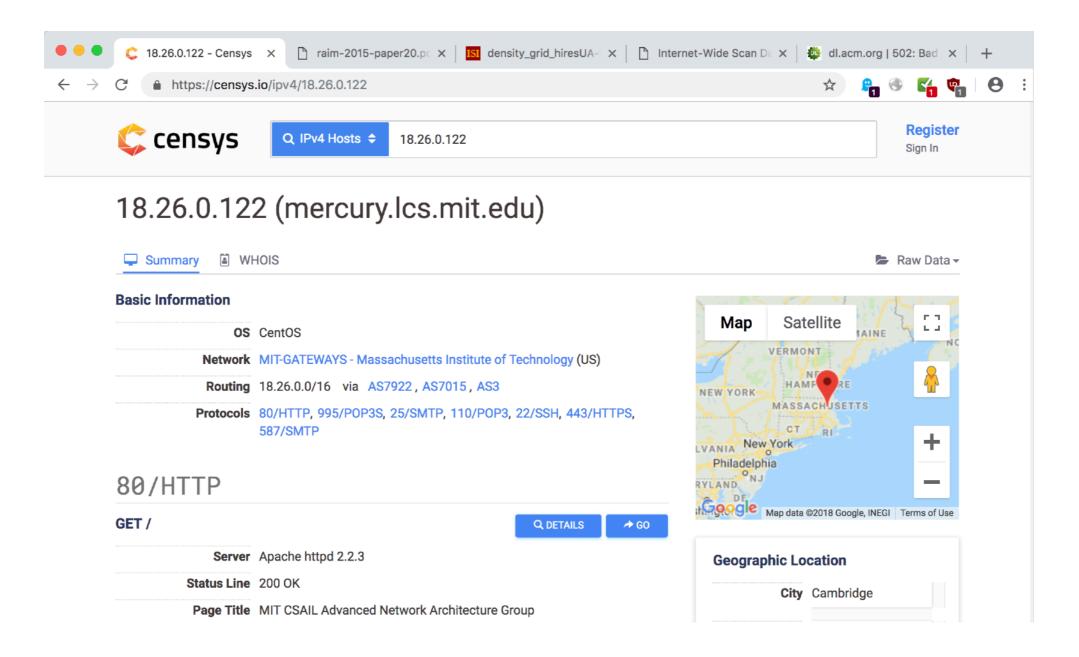
Encode destination IP address into probe packets, match responses on arrival.

TCP SRC port	TCP sequence number	
		-
TCP DST port	TCP ACK = SEQ + 1	

Adrian et al. "Zippier ZMap: Internet-Wide Scanning at 10 Gbps" WOOT 2014.

ZMap example: Track Heartbleed Vulnerability




Figure 3: **HTTPS Patch Rate.** We track vulnerable web servers in the Alexa Top 1 Million and the public IPv4 address space. We track the latter by scanning independent 1% samples of the public IPv4 address space every 8 hours. Between April 9 and June 4, the vulnerable population of the Alexa Top 1 Million shrank from 11.5% to 3.1%, and for all HTTPS hosts from 6.0% to 1.9%.

Durumeric et al. "The Matter of Heartbleed" IMC 2014.

ZMap Data Availability: <u>scans.io</u>

					x 🖁 🖉 😭
nternet-Wide Scan Data Repo	sitory				
110-pop3-starttls-full_ipv4	110	рорЗ	starttls	full ipv4	2018-09-23 00:50:46
143-imap-starttls-full_ipv4	143	imap	starttls	full ipv4	2018-09-23 23:18:48
1900-upnp-discovery-full_ipv4	1900	upnp	discovery	full ipv4	2018-09-24 02:36:51
1911-fox-device_id-full_ipv4	1911	fox	device id	full ipv4	2018-09-24 12:18:22
20000-dnp3-status-full_ipv4	20000	dnp3	status	full ipv4	2018-09-22 12:48:09
21-ftp-banner-full_ipv4	21	ftp	banner	full ipv4	2018-09-24 23:06:17
22-ssh-v2-full_ipv4	22	ssh	v2	full ipv4	2018-09-19 00:50:30
23-telnet-banner-full_ipv4	23	telnet	banner	full ipv4	2018-09-19 00:36:10
2323-telnet-banner-full_ipv4	2323	telnet	banner	full ipv4	2018-09-19 23:05:48
25-smtp-starttls-alexa_top1mil	25	smtp	starttls	alexa top1mil	2018-09-24 12:38:16
25-smtp-starttls-full_ipv4	25	smtp	starttls	full ipv4	2018-09-23 00:47:42
443-https-dhe-alexa_top1mil	443	https	dhe	alexa top1mil	2018-09-24 12:38:08
443-https-dhe-full_ipv4	443	https	dhe	full ipv4	2018-09-23 23:51:00
443-https-dhe_export-alexa_top1mil	443	https	dhe export	alexa top1mil	2018-09-24 11:09:59
443-https-dhe_export-full_ipv4	443	https	dhe export	full ipv4	2018-09-20 23:09:01
443-https-heartbleed-alexa_top1mil	443	https	heartbleed	alexa top1mil	2018-09-23 14:18:44

ZMap-driven search engine: censys.io

Durumeric et al. "The Matter of Heartbleed" IMC 2014.

Interested in Internet Measurement Projects?

richterp@csail.mit.edu